
AD-A246 896
liIflh0li

NAVAL POSTGRADUATE SCHOOL

0

Monterey, California

DTIC
ADPELECTE

MNA'RO 3 19

THESIS

CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN
OF COMPUTER-AIDED INSTRUCTION

by

DAWN MARIE MASKELL

MARCH 1992

Thesis Advisor: TIMOTHY J. SHIMEALL

Approved for public release; distribution is unlimited.

92-052539222807 o 9 Iili

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

". NAME OF PEEFORMIG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer science Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS
6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

SPAWARS PMW-183

8c. ADDRESS (City State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNITWashington D.C. 20363-5100 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN OF COMPUTER-AIDED INSTRUCTION

K TYP 13b. TMCOVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNTvaises ORsi TM 150 E ON
esis FROM TO MARCH 1992 150

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the

Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse it necessary and identify by block number)

FIELD GROUP I SUB-GROUP I Concept-Flow Diagram, Master' Test

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Current software design techniques are organized around either data transformation or stimulus-response control

flow abstractions. Neither of these approaches apply to the flow of presentation and answer analysis that characterizes
computer-aided instruction. This thesis introduces a new design abstraction, concept-flow, and technique that
exploits it in the design of tutorial software. The design technique uses concept-flow diagrams, which highlight
presentation of information and verification of user comprehension.The technique is explained through application to
a tutorial on the physics of underwater sound. The design and implementation of a prototype concept-flow interpreter
are presented. This design technique and the associated interpreter allow for rapid construction of highly flexible
computer-based tutorial strategies, useful for both traditional CAI applications and for more efficient help-sequence
design in interactive systems.

20. DIITIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[U,.CLASSIFIED/UNLIMITED [] SAME AS RPT [] DTIC USERS UNCLASSIFIED

AI 'VIDUAL 22b TEL ONE(46-25 Area Code) 22c [MCE SYMBOL

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

CONCEPT-FLOW DIAGRAMS: METHOD FOR DESIGN OF
COMPUTER-AIDED INSTRUCTION

by

Dawn Marie Maskell
Lieutenant, United States Navy

B. A., University of California, Los Angeles, 1985

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author: A..}c.dn
Dawn Marie Maskell

Approved By: <

Timothy ". S9himeall , Thesis Advisor

AlhB. Cop pen Sefdlader

oert B. McGhee, Chairman,
Department of Computer Science

m~l II •

ABSTRACT

Current software design techniques are organized around either data transformation or

stimulus-response control flow abstractions. Neither of these approaches apply to the flow

of presentation and answer analysis that characterizes computer-aided instruction. This

thesis introduces a new design abstraction, concept-flow, and technique that exploits it in

the design of tutorial software. The design technique uses concept-flow diagrams, which

highlight presentation of information and verification of user comprehension.The

technique is explained through application to a tutorial on the physics of underwater sound.

The design and implementation of a prototype concept-flow interpreter are presented. This

design technique and the associated interpreter allow for rapid construction of highly

flexible computer-based tutorial strategies, useful for both tradition:l CAI applications and

for more efficient help-sequence design in interactive systems.

Copy
INSPECrED

6

Acoession For 11
NTIS GRA&I
DTIC TAB
Unannounced
Just if icat ion

By
DIstributior/
Availability Codos,

Aval and/or
DMat Special.2iii st Slea

TABLE OF CONTENTS

1. INTRODUCTION .1...

A. THE PROBLEM ... I

B. TH E NEED S ... 2

C. A SOLUTION: CONCEPT-FLOW DIAGRAM 3

1. Brief Overview of the Design Methodology 3

2. Sym bols U sed ... 4

a. R ectangle ... 4

b. C ircle .. 4

c. A rrow ... 4

d. O ctagon .. 4

3. Labelling of Symbols Used .. 4

D. APPLICATION OF THESIS ... 5

E. THESIS CONTENTS .. 5

II. CONCEPT-FLOW DIAGRAM METHODOLOGY 6

A. PHYSICS OF SOUND TUTORIAL 6

B. PEDAGOGICAL PHASE OF DESIGN 6

1. U ser G roup .. 6

iv

2. Concept G oals .. 7

3. Concept Dependencies .. 7

4. M astery Test Placement .. 9

0 C. CONCEPT-FLOW DIAGRAM ... 13

1. Concept Bubble ... 13

2. M astery Test Octagon .. 14

3. G uidelines .. 15

III. CONCEPT-FLOW DIAGRAM METHODOLOGY AS

APPLIED TO THE PHYSICS OF SOUND TUTORIAL 16

A. CONCEPT-FLOW DIAGRAM .. 16

1. L evel I ... 16

2. L evel 2 .. 18

3. L evel 3 .. 18

B. DATAFLOW DIAGRAM .. 18

1. Context D iagram .. 18

2. L evel I .. 18

C. SUMMARY OF CFD AND DFD COMPARISON 25

IV. DESCRIPTION OF PROGRAM ... 27

A. COMPUTER SYSTEM .. 27

B. IMPLEMENTATION OF DESIGN TOOLS 27

C. DESCRIPTION OF GRAMMAR AND DATA STRUCTURE 28

V

1. G raphic Definition .. 28

2. cfdnode .. 28

a. actionlist ... 29

(1) region -id .. 30

(2) draw ... 30

(3) clear ... 30

(4) w rite ... 30

(5) input .. 30

(6) pause .. 30

(7) drag .. 30

(8) quit .. 30

b. response -list ... 31

(1) click-left, click-middle, click right, click-any 32

(2) click-help, click-continue or click-exit 32

(3) m ouse-m ove .. 32

(4) integer "seconds" 32

(5) arithm etic operators 33

c. U se of assert and past 33

(1) past .. 34

(2) assert ... 34

3. cfdm enu .. 34

D. DESCRIPTION OF INTERPRETER 34

vi

1. Present Actions ... 35

2. Interpret Response .. 35

V. CONCLUSION AND FUTURE RESEARCH............................ 37

A. SUMMARY OF CONTRIBUTIONS............................... 37

B. RECOMMENDATIONS FOR USE 37

C. RECOMMENDATIONS FOR FUTURE RESEARCH.................. 38

APPENDIX A.. 39

APPENDIX B.. 41

APPENDIX C.. 69

APPENDIX D.. 70

APPENDIX E.. 93

APPENDIX F ... 128

LIST OF REFERENCES... 137

BIBLIOGRAPHY................... 138

INITIAL DISTRIBUTION LIST... 140

vii

I. INTRODUCTION

A. THE PROBLEM

More and more, instructors are using computers as instructional tools both in and out of the classroom

environment. The use of a computer as an instructional tool is referred to is Computer-Aided Instruction

(CAI), "a process in which the computer is actually the prime deliverer of the instruction (Burke, 1982,

p. 16)

The educational promise of CAI lies in its ability to individualize and personalize the instructional
process. CAI lessons can test as well as tutor by encouraging students to become active participants in
their own learning. Students work at their own pace while the computer monitors their progress.
Students are kept informed of their progress through intermediate response and achievement summaries.
(Marks, 1981, p. 228)

Current techniques for design of instructional software tend to produce computer-driven tutorials. The

computer system drives the presentation of a specific topic and determines to what degree the presentation of

that concept will occur even if the user already has a grasp of the concept. The computer presentation of the

lesson is an almost linear process; presentation of the concepts is in a specific order with only limited or no

dcvia'ion to this order allowed. Thus, current techniques do not simulate the real-world teaching environment.

In a real-world teaching environment, the teacher determines the level of student comprehension; the teacher

determines when the student has difficulty understanding the concept and can therefore digress to a level of

comprehension upon which to build and teach the concept; and the teacher determines when the student

understands a concept, when not to continue dwelling on the concept at hand and when to move on to a new

concept presentation.

Current software design techniques do not allow for the proper representation of the concept-flow

needed to simulate the real-world teaching environment in CAl. They aid in determining the control flow,

when to execute a process, and the data flow, how data is passed between processes, within the system. Both

of these techniques are useful in the software engineering field but are not very helpful with CAI design.

There is a need for a design technique that allows the user to drive the concept presentation. Therefore, we

want to design a technique that allows for a closer simulation of the teacher-student interaction environment.

B. THE NEEDS

To simulate the real-world teachcr-student environment, the computer system must determine and

detect when the lesson plan needs adjustment to better suit the needs of the user. The program must make the

determination, as does a teacher, based upon user response. There are two ways of making this determination:

either the user explicitly claims no knowledge or the user specifically claims knowledge that requires

verification to ensure expertise.

If the user claims little or no knowledge of a concept, then presentation of the tutorial should

automatically occur. Once the user initiates the program and begins demonstrating an understanding of

concepts through task accomplishment, an actual explanation of a concept should occur only when the user

demonstrates or claims unfamiliarity with that concept. When the user has trouble comprehending a concept,

the program should backtrack until a level of comprehension is found. Basing the flow of the lesson upon this

level of comprehension, the program then begins from this concept and moves forward. As Krendl suggests,

this allows the novice user to benefit from structure, systematic presentation of material, and opportunity for

practice. (Krendl, 1988, p. 371)

"High aptitude students are more likely to benefit when they can control the pace, amount of practice,

level of difficulty, and style of instruction to suit their own needs." (Krendl, 1988, p. 371) Therefore, if the

user shows or claims knowledge of a concept, omission of a tutorial of the concept should occur allowing the

user to progress onto the next concept. This will prevent the user from experiencing the boredom produced

by forcing him/her to cycle through a tutorial he/she already understands. An expert user should be able to

drive the presentation forward from concept to concept after demonstrating an understanding of each concept

through successful task accomplishment. Therefore, the user, instead of the computer, is guiding the concept

presentation.

Software designers need to allow for this varying concept presentation flow in the program design. The

program should allow a user with an arbitrary level of comprehension to traverse through the program dealing

only with the presentation of concepts when they are not understood. Hence, in order to allow for this tutorial

presentation, the concept presentation must encourage minimal ordering constraints.

Alfred Bork, a leader in the pedagogical development of computer-based learning, uses pedagogical

flowcharts to diagram the presentation-flow of a tutorial (electronic mail from Bork). These flowcharts are

non-hierarchical, informal, and are difficult to translate into software. There is a need for a formal diagram

that more explicitly displays the hierarchy of the presentation and that leads to a natural translation into

software.

C. A SOLUTION: CONCEPT-FLOW DIAGRAM

To support a minimal-ordering design, we introduce a new diagram to the structured analysis design

methodology. The new tool is called a Concept-Flow Diagram (CFD). A CFD is for use to aid in the design

of CAI by software engineers, computer scientists and anyone involved in the process of designing a tutorial

of any type. The CFD is a high-level diagram and is for use in conjunction with pedagogical design, a series

of instructional goals, and Dataflow Diagrams (DFD), the connections between program subunits.

1. Brief Overview of the Design Methodology

Before attempting to design the CFD, the designers must first attempt a pedagogical design. It is

during this stage that the instructional materials are fully specified from an instructional point of view (Bork,

p. 106). From the pedagogical design, specific concepts that need presentation should be apparent.

A general, but less will-defined, method is to use the educational objectives and task analyses to
subdivide the course into a set of concepts and techniques which have to be learned. These can be
partitioned into a series of levels, depending on their complexity, and usually checks are made to ensure
that the student has reached a satisfactory standard of mastery before he is allowed to continue to higher
levels. (Walker, 1984, p. 45)

These concepts translate into a module or bubble in the CFD. The CFD represents the forward and

the backward presentation of these concept modules. Hartley argues for ". . . a more comprehensive

representation of the student's knowledge state on which to base decision making ... " (Walker, 1984, p. 39)

Therefore, at the start of a new concept module, the user is given a task or comprehension test to complete

via a mastery test (MT). This allows for an active involvement in learning, which is necessary for effective

learning and achieving desired outcomes (Levin, 1981, p. 1). Performance upon completion of this task

determines the user's level of comprehension. If the user demonstrates comprehension or satisfactorily

completes the task, the system moves on to the next task or instruction-related exercise. If the user does not

complete the task or cannot pass the comprehension test, the feedback should ". . . locate errors and provide

information so that the learner can put them right ... " (Walker, 1984, p. 43) and also provide "... .corrective

procedures by which gaps in learning, mistakes, and misunderstandings can be relearned or corrected."

(Levin, 1981, p. 16) The system then reverts to a tutorial and presentation of the concept. The idea is to

introduce the tutorial only when needed. Upon successful completion of the MT for the specific concept

module, flow moves on to the next concept module. This is in keeping with Bork's suggestion that pretesting

and post-testing be included in the tutorial to make individualization possible. (Bork, p. 77)

2. Symbols Used

We based the symbols used in the CFD on Dataflow Diagrams to allow for easy understanding

and translation of the new diagram. Refer to Yourdon's recent work (Yourdon, 1989, pp. 139-187) for a

detailed explanation of the DFD.

a. Rectangle

A rectangle represents external entities, or terminators, with which the system

communicates. A terminator is usually a person, a group of people, or another system outside the control of

the system modeled. The systems analyst cannot change the contents, organization or internal procedures

associated with the terminators. (Yourdon, 1989, pp. 155-156, pp. 345-347) This is the same as a terminator

in a DFD.

b. Circle

A circle represents concept that is to be presented. (Also referred to as concept bubble).

Circles are decomposed into further Concept-Flow Diagrams as needed to detail the concept-flow forming a

design hierarchy.

c. Arrow

An arrow represents concept-flow and direction. It points to the next concept for introduction

and/or MT to be given. An arrow indicates the dependency of concepts or modules from one part of the lesson

to another.

d. Octagon

An octagon represent,; a series of tasks that form a MT. Octagons may be decomposed into

further Concept-Flow Diagrams to show task sequencing and help presentation.

3. Labelling of Symbols Used

The name given to each concept should be specific enough to give the user of the diagram an idea

of exactly what type of information is presented in the concept presentation. The name of the MT should be

the exact same as the concept or concepts that the MT is testing for comprehension. Arrows do not get labelled

since they only represent the direction of flow.

4

D. APPLICATION OF THESIS

Concept-Flow Diagrams arc extremely useful and immediately applicable to CAI and computer

tutorials. They benefit both the software designer and the user. Software designers have at their disposal a

structured analysis design tool to improve the presentation and flow of their program. Also, they are given a

tool that looks somewhat familiar to software engineers, making the learning of CFD design easier. The user,

on the other hand, is able to use a CAI program that better suits his/her needs. The tutorial is more useful to

the general user. Through the use of Concept-Flow Diagrams, the novice user is challenged but not frustrated

with the presentation of new material and the experienced user is allowed to demonstrate understanding rather

than becoming bored with presentation of concepts he/she already comprehends. Help is provided only when

the user demonstrates a deficiency, either through task performance or explicitly. Concept-Flow Diagrams,

thus, improve the functionality of CAI tutorials.

E. THESIS CONTENTS

Chapter 11 explains the methodology behind the CFD. Chapter III explains the application of the CFD

methodology to the design of an actual tutorial that will be implemented. Chapter IV describes the program

that was written for the tutorial implementation. And finally, chapter V presents the conclusions and

directions for future research.

5

II. CONCEPT-FLOW DIAGRAM METHODOLOGY

A. PHYSICS OF SOUND TUTORIAL

The Concept-Flow Diagram (CFD) design methodology was developed to aid in the design of a tutorial

concerning the physics of underwater sound. This area was chosen because the U. S. Navy, specifically,

Space and Naval Warfare Systems Command (SPAWARS (PMW-183)), requested that we design a tutorial

to present just that. The intended users of the tutorial are U. S. Navy enlisted personnel in the Ocean Systems

Technician Analyst (OTA) rating. This user group includes the high school graduate who basically has no

knowledge of the topic, and the experienced OTA, who has worked with and studied the physics of sound.

The tutorial begins with an introduction of how to use the particular computer program. The concepts covered

in the tutorial are basic definitions regarding the physics of sound, the characteristics of sound, ocean

characteristics, ray path transmission and loss, the passive sonar equation, and the sound velocity profile. The

placement of mastery tests (NIT) and the concept-flow of the Physics of Sound Tutorial (POST) are discussed

in this and the following chapter.

B. PEDAGOGICAL PHASE OF DESIGN

"The key to pedagogical design, in all its phases, is the extremely good teachers. It is the competence

of the good teacher that one tries to capture within the computer program." (Bork, 1990, p. 6) As suggested

by Bork's methodology (Bork, p. 106), a professor of physics was consulted for the pedagogical design phase

of the POST. To form a pedagogical basis for the design, designers must determine two things to allow for

easy transition to the design of the CFD. First, the pedagogical phase must determine exactly what the concept

goals are and second, what tasks to include in the NIT. These determinations are formed in a series of four

steps.

1. User Group

The first step is to determine the user or person/group of people for whom the system is being

built.

The user may be job specific such as an operator, a supervisor or an executive; the user may be based
on the level of experience of the potential users of the system; or the user may be inherent in the concepts
being taught. (Yourdon, 1989, pp. 155-156)

6

Knowing who the users of the tutorial will be affects the pedagogy of the tutorial. The

terminology, complexity of mastery tests, and the order of the presentation are much different for

the novice than the expert user. The pedagogy for the novice user begins with low-level concept

goals and mastery tests and increases in complexity as the user completes portions of the tutorial.

The expert user, on the other hand, begins with high-level concept goals and tasks.

2. Concept Goals

Once the user group is identified, the next step is to examine the tutorial system as a

whole and determine the overall concept goals. In other words, the analyst needs to decide what

the student must comprehend upon completion of the tutorial. This step can take the form of a list

of all of the concepts needed for presentation in some form within the tutorial. This list of concepts

is then grouped into categories of related concepts and each category assigned a descriptive name.

In the case of the POST, we produced the list in Figure 1.

3. Concept Dependencies

Once the concept goals are known, the next step is to determine the dependency

relationship between each of the concept categories. In other words, the analyst needs to decide

what concepts must be taught prior to other concepts in order to facilitate comprehension. For

example, it makes no sense to present the passive sonar equation before presenting what a source,

sound and detector are and what the relationship and behaviors are in the medium through which

the sound is travelling. As the dependency relationships became apparent, the order of

presentation of these groups based on the dependencies also became apparent.

The order of the presentation is not linear. Linearity occurs when the entire tutorial

presentation is restricted to the presentation of one concept after anothcr in a specific order. While

this may be appropriate for a fully homnogenous group of students, it forces experts to review

known material. If the order is initially linear, subdividing and rearranging the contents of the

concept goal categories is necessary until the dependencies are more explicit. The subdivision and

rearrangement of the concept goal categories leads to the formation of concept categories that

allow the user's knowledge to derive the order of presentation within a section of the tutorial. The

7

Introduction and Basic Definitions
Source Sound and Ray Path
Medium Detector

Sound Characteristics
Frequency Amplitude
Hertz Effective Pressure Amplitude
Period Wavelength
Compression Wavefront
Rarefaction Absolute Sound Pressure Level
Longitudinal wave Decibel
Broadband Tonals

Ray Path Transmission and Loss
Attenuation and Absorption Directed Path
Spreading/divergence Reflected Path
Spherical Spreading Refracted Surface Reflected
Cylindrical Spreading Path
Scattering Refracted Path
Critical Angle Limiting Ray
Multipath Propagation Shadow Zone

Ocean Characteristics
Bathymetry Noise
Isothermal Biological Noise
Gradient Hydrodynamic Noise
Thermocline Ocean Traffic Noise
Sound Channel Sea Surface Noise
Surface Ducts Seismic Noise
Deep Sound Channel Bottom Bounce
Convergence Zone Mixed Layer
Reliable Acoustic Path

Sound Velocity Profile
Temperature Pressure
Salinity Deep Sound Channel Axis

Passive Sonar Equation
Transmission Loss Source Level
Noise Level Array Gain
Recognition Differential Figure of Merit
Signal Excess Noise Spectrum Level
Bandwidth Doppler
Echo Level

FIGURE 1: Concept Categories

8

original list of concept goal categories and their dependency relationship for POST is illustrated in Figure 2.

The original order of the concept presentation is linear. Upon reexamination of the concept categories and

their contents, we discovered that several of the categories were related and could be combined. The

reexamination included looking for related concepts, no matter which category they were a part, In Figure 2,

Ray Path Transmission and Transmission and Propagation Loss categories are related, so these two

categories were combined. The rearrangement of the categories changed the dependency relationship.

Categories emerged whose order of presentation would be left to the student. Students may choose if Ray Path

Transmission and Loss is presented before or after Ocean Characteristics. Figure 3 illustrates the refined

concept dependency relationships.

4. Mastery Test Placement

The last step is to determine where in the system to place the mastery tests and what tasks to

include within these master) tests. A MT is a task or a group of tasks such that the tasks are "... . large enough

to expose the student's misunderstandings and correct them.'" (Walker, 1984, p. 43) User performance upon

completion of the task determines the next state in the tutorial flow. If the user successfully completes the

task, the MT directs the tutorial flow in a forward direction advancing to another state or concept. However,

if the user does not successfully complete the task, answer analysis within the MT determines the tutorial

flow.

Answer analysis of a task consists of determining the possible answers, both correct and incorrect,

and if necessary, the types of answers given to previous tasks. By maintaining a history of previous answers,

a pattern of errors made may develop making the area of deficiency more specific. If answer analysis cannot

immediately determine the exact area of deficiency, the tutorial backtracks through the mastery tests until the

deficient area is pinpointed. The mastery tests, not the concept bubbles, determine the user's level of

comprehension.

Mastery tests are a part of the bubble to ensure the user comprehends the low-level concept goals.

Mastery tests can and should be given upon completion of one or more related bubbles to ensure the user is

not only grasping the individual concepts goals, but is also able to tie these concepts together to understand

the more general concept goal. The placement of mastery tests is illustrated in Figure 4. Successive tasks

within a MT should increase in complexity. By gradually increasing the complexity of each task, the MT

design makes answer analysis easier.

9

Introduction

Basic Definitions

SudCharacteristic

TransmIssio
Tranmisionand Propagation Loss

Ray Path Transmission

Oca

OenCharacteristics

Sound Velocity Profile

Passive Sonar Equation

FIGURE 2: Original Concept Category Dependency Relationships

IC0

Introduction & Basic Definitions

Sound haracteristics

Ray Path Transmission Ocean Characteristics
and Loss

Sound Velocity Passive Sonar
Profile Equation

FIGURE 3: Refined Concept Category Dependency Relationships

Introduction & Basic Definitions

Sound Characteristics

MT
Introduction & Basic Definitions

Sound Characteristics

Ray Path Transmission Ocean Characteristics
and Loss

MT
Introduction & Basic Definitions

Sound Characteristics
Ray Path Transmission & Loss

Ocean Characteristics

Sound Velocity Passive Sonar
Pr ile Equ tion

MT
All of the above

FIGURE 4: NIT Placement

12

C. CONCEPT-FLOW DIAGRAM

Upon completion of the pedagogical phase of design, the next step is to formulate the concept-flow by

using the CFD. At this point in the tutorial design process, the concepts to be presented and the tasks to

include in the MT have been determined in the pedagogical phase. The basic premise behind the CFD is to

let the user demonstrate level of comprehension and delve into the actual concept presentation only if

necessary, i.e., the user demonstrates a deficiency in a specific area. The user should have the option of either

starting with a tutorial presentation or delving into a MT. Theoretically, the expert user should be able to

traverse through the tutorial from MT to MT without a concept presentation occurring.

The CFD design consists of levels as with the Dataflow Diagram (DFD). The top level of the CFD is

level 1, the second level is level 2, and so on. The high-level diagrams will have small numbers and the low-

level diagrams will have large numbers. The higher levels, i.e., level 1, contain general concept goals and

mastery tests; the low levels contain the specific concept goals and mastery tests.

1. Concept Bubble

The concept categories delineated in the pedagogical design phase translate into the high-level

bubbles in the CFD. The dependency relationships determined in the pedagogical design phase translate into

the placement of the bubbles and the arrows between them to indicate flow of the tutorial presentation. The

contents of each bubble becomes more specific as you move down (levels with high numbers) in the CFD,

until the lowest level is reached. The concept goals within each concept category of the pedagogical design

are translated into the lowest level of the CFD. The lowest level of the CFD pinpoints the exact concepts to

be presented and the order of presentation. It is acceptable for the lowest level concept order of presentation

to be linear.

There should be no more than 9 concepts per level, including level 1. "People can deal with seven,

plus or minus two, chunks of information consciously and comfortable. More than nine chunks of information

can lead to confusion and overload." (Cleveland, 1986, p. 18) If more than 9 concepts per level occur, the

pedagogical design must be reviewed to determine if concept categories can be combined at the higher levels

then broken out at the lower levels. Each category must contain closely related concepts, not just an arbitrary

group of concepts. Therefore, a concept category may be divided into subcategories. The subcategories then

translate to intermediate levels of the CFD and the specific concepts are the lowest level of the CFD.

Each bubble is numbered as with the DFD. Numbering each bubble allows for relating a bubble

to the surrounding levels of Concept-Flow Diagrams. The number of each low-level CFD relates to the high-

13

level CFD bubbles. For example, bubble 1.1.1 is a level 3 diagram and the bubble is part of bubble 1.1 in level

2 and bubble I in level 1. Reversing the process, if bubble I in level 1 of the CFD is broken down, the level

2 bubbles will be numbered 1.1, 1.2, 1.3, etc.

2. Mastery Test Octagon

This is probably the most difficult determination to be made in the design of the tutorial. The

mastery tests determine the level of comprehension of the user and whether or not the user is ready to move

forward or backward in the flow of the tutorial. The MT is therefore extremely important in the design of the

tutorial.

Great care must be taken in determining the placement of the mastery tests and determining the

tasks presented within each MT. This does not necessarily mean that in the higher level CFD, i.e., level 1,

there must be a MT given after each concept. When designing POST, the first attempt at MT placement put

at MT between each and every bubble. We discovered that this is unnecessary. A MT between two bubbles

is unnecessary if the flow to the second bubble is only dependent upon the previous bubble. For example, it

is unnecessary to place a MT between the Introduction & Basic Definitions bubble and the Sound

Characteristics bubble in Figure 3. The MT within the Introduction & Basic Definitions bubble is sufficient

to determine user comprehension of that concept category. Placing another MT between the bubbles would

only be redundant. It is necessary, hok ever, to place a MT after the completion of the Sound Characteristics

bubble because the user must comprehend both the Introduction & Basic Definitions bubble and the Sound

Characteristics bubble prior to starting either the Ray Path Transmission and Loss bubble or the Ocean

Characteristics bubble.

There are smaller mastery tests given within each bubble in order to determine comprehension of

that particular concept. The mastery tests within a bubble address znecific concepts within that bubble. At the

end of the presentation of a bubble and prior to flowing to the next bubble, there is a MIT to ensure that the

user comprehends the concept category presented. Then, if a MT follows in the flow, it tests comprehension

of the relationship between that bubble and any other bubbles already presented. For example, in Figure 4,

the mastery tests within the Introduction & Basic Definitions bubble and the Sound Characteristics bubble

test only their respective concepts. The MT given after the Sound Characteristics bubble tests the

comprehension of the relationship between the Basic Definitions and the Sound Characteristics.

The addition of the MT to the diagram complicates the 9 bubbles per level rule. If the addition of

mastery tests clutters the diagram, the entire CFD must be readdressed. It may require that more concepts that

14

are related be combined and/or the placemcnt of mastery tests changed. Mastery tests are numbered just as

with the bubbles.

3. Guidelines

This translation into a CFD is by no means the final CFD. The CFD must constantly be reviewed

for improvement. The following guidelines and criteria must be considered:

I. Are there more than 9 bubbles on each level of the CFD? The CFD cannot look too busy or cluttered.
If there are more than this number of bubbles and mastery tests, take another look at the concept
categories determined in the pedagogical design. Concept categories may need to be combined or
reorganized to meet this criteria. Divide the CFD into more levels than planned or reevaluate the use
and placement of mastery tests. This only leads to better modularization of, flow of and answer analysis
within the tutorial.

2. Do the mastery tests serve as a point of bottleneck? A bottleneck occurs when the MT is testing too
broad and area for comprehension. If so, reconsider the mastery tests that are needed in the tutorial. A
bottleneck indicates a need for further breakdown of concept categories and placement of mastery tests
within the tutorial.

3. Does the design allow backtracking from MT to NIT?

4. Does the design allow the user to choose between concept presentation or MT presentation?

15

III. CONCEPT-FLOW DIAGRAM METHODOLOGY AS APPLIED TO THE
PHYSICS OF SOUND TUTORIAL

The pedagogical design phase of the Physics of Sound Tutorial (POST) has been completed as

discussed in the previous chapter. The concept categories and their subgoals are now organized to be

incorporated into the tutorial by using the Concept-Flow Diagram (CFD). The following discussion applies

the CFD and the Dataflow Diagram (DFD) methodologies to POST.

A. CONCEPT-FLOW DIAGRAM

1. Level 1

Level 1 of the CFD is illustrated in Figure 5. At this level, the CFD shows the general concept

categories introduced and when the mastery tests occur. The user may enter at one of two points: go directly

into the MT or start with the concept presentation. The bubbles are the concept categories determined during

the pedagogical design phase (Figure 1). The flow and MT placement correspond to the relationships

determined during the pedagogical design phase (Figure 4). The mastery tests visually break up the tutorial

into three distinct areas: bubbles I and 2; bubbles 3 and 4; and bubbles 5 and 6. This was not intentional; the

thought that went into the pedagogical design and the final dependency relationships made this a natural flow.

The contents of the Introduction and Basic Definitions bubble in Figure 5 are listed below. The

other concepts will be implemented in the future and therefore, the specific areas covered within each topic

arc not discussed.

I. Buttonology - how the mouse operates and how each button that appears on every screen operates.
Buttons introduced arc HELP, CONTINUE and EXIT.

2. Source - the definition of the term, how represented in the tutorial and manipulation of the source by
the user.

3. Medium - the definition of the term and how the medium affects the speed of sound.

4. Sound and Ray Path - the definition of the term and how represented in the tutorial.

5. Detector - the definition of the term, how represented in the tutorial, manipulation of the detector by
the user and the effects on detection of sound depending upon the relationship between the source and
the detector.

16

ntroduction Sound MT

& P Characteristics IBD 40Basic Def s (SC) &(IBD) 2 Sc
7

Ray Path Ocean
Transmission Characteristics

and Loss Q(0
(RPTL) 4

MT

RPTL
Do &

0C
8

Sound Passive
Velocity Sonar
Profile Equation
(SVP) (PSE)

5 6

MT

No. SVP

PSE
9

FIGURE 5: Concept-Flow Diagram Level 1

17

2. Level 2

Refer to Figure 6. he first attempt at designing the level 2 diagram is illustrated in Figure 7. Notice

there is a MT after each concept presentation. Upon further design and review of the pedagogical design, we

discovered that this was unnecessary for the POST. The concepts presented are so basic that the MT for each

concept would be trivial. A MT within and between each concept bubble caused the MT between each

concept bubble to be trivial and redundant. We decided that a MT for concepts 1.2 thru 1.5 was much more

effective as illustrated in Figure 7.

Each bubble in Figure 7 represents the presentation of each concept. Bubbles 1.2 thru 1.5 are not

contained within one bubble because each concept presentation depends upon the student understanding the

prior concept presentation. Although there are not explicit mastery tests between each bubble, there are

mastery tests within each bubble. It is the successful completion of these mastery tests that determines

transition to the next bubble.

3. Level 3

The original version of the CFD level 3 diagram appears in Figure 8. Notice that there are no

mastery tests. Upon reexamination, we decided that the Introduction bubble needed to be more explicit and

that mastery tests were needed. The inclusion of mastery tests ensured that the user had mastered the basic

tasks of using the mouse prior to starting the tutorial. This diagram was revised, Figure 9, to include them.

Mastery tests are not given after the presentation of each concept goal because the MT after all of the concepts

at this level have been presented would be too trivial and redundant. The concepts themselves are so basic

that one MT at the end is sufficient.

B. DATAFLOW DIAGRAM

1. Context Diagram

The context diagram represents the entire system. The context diagram for POST is illustrated in

Figure 10. In addition to the student using the tutorial, terminators are introduced represening an instructor

and the Ocean Systems Qualification (OQS) board. The instructor and the OQS board are able to monitor

student progress and to update the tutorial as needed.

2. Level I

Level I of the DFD is illustrated in Figure 11. A quick glance at Figures5 and 11 shows a drastic

difference in the CFD and the DFD. The difference is due to what each ar-'ysis tool represents. The DFD

18

MTSourc
Source 1.2

1.7

MTMedium

Medium 1.3

1.9

Detector 1.5
1.10

FIGURE 6: Original Concept-Flow Diagram Level 2

19

1.10

21.

11.1.2

Button Bto

FIGURE 8: Original Concept-Flow Diagram Level 3

represents the communication between software structures of the system and shows how the data is passed

throughout the system. The CFD attempts to provide a visual aid to illustrate how the tutorial is to be

presented; i.e., the sequence of introduction of different concepts.

The terminators of the POST tutorial are:

1. The instructor. The instructor is allowed to interact with the tutorial text and test question file.
Interaction includes the instructor deciding which concept module the student will use or modifying
the test questions asked of the student. The instructor also may keep track of user mastery test (MT)
results.

21

ntoutin3Mouse

Buttons 1.3
1.1.2

FIGURE3 9:RMi oeFo DiaramLevln

Cotinu~e

Button
1.1.4

HELP, Exit

CONTINUE, BtoEXIT B1tton
Buttons1.5

1.1.7

FIGURE 9: Revised Concept-Flow Diagram Level 3

2. The Ocean System Qualification Standard (OQS) Board. The OQS Board may interact with the system
by requesting and/or monitoring MT results of each user.

3. The user of the tutorial. The user may request which concept he/she wishes to explore. If the user must
quit the tutorial, either temporarily as an icon or for an extended period of time, he/she may restart the
tutorial at the point at which he/she quit. Determination of this point of restart is through check points
reached when the user last used the tutorial.

22

OQS Board

Student
Tutorial
Results

Tasks Test
Concet Stdent Questions

Requests Ttra

FIGURE 10: Context Diagram

Bubble I of Figure I I allows the instructor to interact with the tutorial text and test questions file. The

tutorial presentation uses this file for the text of concept explanations and mastery tests. For each tutorial, the

main process is to present the tutorial, bubble 2. The CFD is actually a more detailed design of this bubble. It

delineates exactly how to present the tutorial, taking into consideration the topic of the lesson plan. Because

the mastery tests are given within this process, the instructor and the OQS board get the individual user

performance statistics from here. The other process that occurs in a tutorial is the restart, bubble 3. If the user

exits the tutorial in the middle, the user is brought back to the concept where he/she left off. The tutorial has

check points assigned after the completion of a concept or MT. When the user restarts the tutorial, the check

point file is checked find the last check point encountered. The tutorial then restarts from this check point.

23

Changes to

Tutorial Mastery
Test
Results

Textor

Tutorial Text and Test Questions File

Tutorial
Text

Tutorial

OQ Tutorial Tuexta
""' Tutorial x

Check ChecRqus
Point Point TtraNText

\ Check Point File

__ Point

Start Point

FIGURE 11: Dataflow Diagram Level 1

24

To illustrate the basic process flow, the only DFD level 1 bubble that required further breakdown was

bubble 2, Present Concept. Refer to Figure 12. Within the presentation of the tutorial, the two major processes

that occur are either the presentation of a concept to the user or the presentation of a MT to the user.

1. Once the concept presentation occurs, a MT is given to determine the level of comprehension of the
user. Determination is made by the maintenance of statistics of correct answers to the mastery tests.

2. Once the MT is given, a determination is made by the tutorial as to the level of comprehension. If the
user has shown mastery of the concept, the tutorial moves on to the next MT or concept module. If the
user has shown a deficiency, the tutorial moves to the appropriate concept presentation to help clear the
misunderstanding.

C. SUMMARY OF CFD AND DFD COMPARISON

The CFD design methodology presents a very complex structure while the DFD presents a simple

structure. This is very characteristic of computer-aided instruction (CAI). CAI deals with the trying to present

a wide range of concepts in an ordered manner. The CFD structure allows for the breaking up of this task into

an organized hierarchical structure.

The CFD allows for an instructor to interact with the tutorial presentation to modify task and concept

discussion. This permits the tutorial to be updated as the course develops. By allowing the modification of

the tutorial, the CFD structure must be placed in an external file, interpreted by a fairly general system. This

system is presented in the next chapter.

25

Tutoria QuQuestionss

Peesent Statistic Nextt

Next Concept

FeeriUe 12:e DToiwDaga ee

Comprhensi Nex

IV. DESCRIPTION OF PROGRAM

Now that the structure of the Concept-Flow Diagram (CFD) has been developed, it is necessary to

translate the design into software. In order to do this translation in a flexible manner to allow instructors to

customize the course materials, the CFD is translated into an external file in a special-purpose language. This

language is parsed into a data structure representation and interpreted. The following discussion presents the

grammar implemented to support the data structure and a prototype of an interpreter.

A. COMPUTER SYSTEM

The Physics of Sound Tutorial (POST) module is part of the SPARS Release 5 system. The computer

hardware used for implementation was a U. S. Navy Standard Desk-Top Tactical-Support Computer (DTC-

2) designed by a major systems integration firm, C3, Inc. The DTC-2 uses the SPARC 4 series

implementation of RISC computer architecture. The DTC-2 system includes an 8 MB 4/110 CPU, a 19" color

monitor, a color graphics plotter, a color graphics printer, a mouse, and a track ball. The software used was

SUNOS 4.0 and C compiler. The 4/110 UNIX System V Operating System includes SunView, Open

Windows (XI 1/NeWS), NFS, Assembler, and Real-time Extensions.

The interpreter was implemented using Sun Visual/Integrated Environment for Workstations

(SunView). SunView is a tool that allows for the implementation of graphic-based applications running in

windows. Two types of windows were used in this application: panels in order to use buttons and a canvas in

order to draw text and graphics. The canvas may be used as a whole region or a set of nine regions. A mouse

is used to track location, to click the set of buttons, and as a graphic positioning device. A trackball is available

for use but was not used in the prototype.

B. IMPLEMENTATION OF DESIGN TOOLS

We developed a data structure, a grammar and an interpreter in order to implement the tutorial based

upon the pedagogical design phase, structured analysis and CFD designs. The POST was implemented using

the grammar and data structures described below. Appendices B thru E contain the POST script, grammar,

LEX and YACC files and interpreter respectively. Appendix F contains a detailed explanation of the data

structure elements. In the discussions below, bold italics refer to elements of the grammar and bold refers to

elements of the data structure.

27

C. DESCRIPTION OF GRAMMAR AND DATA STRUCTURE

The grammar is based on the CFD graph semantics and expressed in a BNF notation. The UNIX tools

LEX and YACC were used to implement the grammar as a parse for input files describing the tutorial. The

data structure for a tutorial forms a cfdgraph. A cfdgraph consists of a cfdmenu and nodes, called

cfdjnode. The reserved words of the grammar are listed in Figure 13.

assert halfwid (

clear input)

click-left key +, -

click-mid mouse */

click-right mouse&key ==

click-any mouse-move >

click-help past <=, >=

click-continue pause & (logical and)

click-exit write I (logical or)

draw

halfht

FIGURE 13: Reserved Words

1. Graphic Definition

The user may define the graphics or CFD states at the highest syntax level of the input file. The

graphics are specified by identfier := string. The tutorial script references the graphic images by the

identifier. The string identifies a file in which the graphic is stored. This information is used in the draw and

drag actions. Figure 14 shows the graphic image definitions used in POST Introduction andBasic Definitions.

2. cfd_node

Each node of the CFD is represented as a cfd._node structure with a CFD node identification

number (cfdid), the action or actions that is/are to occur at this CFD node, and the possible response or

28

detector := "dctector sym.icon

mouse.sym := "mousesym.icon"

path:= "path-sym.icon"

post:= "post-sym.icon"

source := "source-sym.icon"

FIGURE 14: Graphic Definition Example

responses expected at this point in the tutorial. An example of the grammar of a typical cfd._node appears in

Figure 15.

(stIl_ 1, ((0, clear),

(1, draw, post@(mouseX, mouseY)),

(2, write, "Welcome to the Physics of Sound Tutorial"),

(5, write, "Upon completion of this tutorial, you will have enough of an understanding to

complete the Physics of Sound module of your OQS"),

(8, write, "Let's begin..

(0, pause, 15)),

st_ 11_5)

FIGURE 15: Example of a State

a. actionlist

The action list specifies the actions that are to occur while in a state. The action list identifies

where in the window to accept input, to draw graphic images and where to display the text of the tutorial. The

actlist of the cfdnode in the data structure represents the action list elements as a linked list data structure of

actnode. The actnode identifies the region of the window in which the action is to occur, the specific action

to take, and the arguments to that action.

29

(1) regionid - The screen window is broken into 10 distinct regions. By breaking the

window into distinct regions, different actions are allowed to take place in the different regions of the

window. This allows the tutorial to simultaneously display graphics and text. In Figure 15, the "0" in (0, clear)

refers to region 0, the "8" in (8, write, "Let's begin .. .") refers to region 8.

(2) draw - This terminal enables the tutorial to display a graphic in the window to enhance

the presentation of the tutorial. The "draw" action must be followed by an identifier specifying the graphic

to be displayed and the location. The location is given using a set of coordinates; either the current location

of the mouse, (mouseX, mouseY), or the location of a graphic currently displayed, (identifier.x, identifier.y).

In Figure 15, (1, draw, post@(mouseX. mouseY)) says to draw the post icon in region 1 at the current location

of the mouse.

(3) clear - This feature allows the erasure from portions of the window text and/or graphics

that are not relevant to the current state of the tutorial presentation. The location is identified as in the "draw"

action. In Figure 15, (0, clear) says to clear region 0.

(4) write - This is the means by which text is displayed in the window. In Figure 15, (2,

write, "Welcome to the Physics of Sound Tutorial") says to write the string "Welcome to the Physics of Sound

Tutorial" in region 2.

(5) input - Restricts the area of the window where the user may input text and/or manipulate

graphics. Restricting the input area to a region within the window prevents the user from arbitrarily writing

text or moving graphics around the window and thus interrupting the tutorial presentation. Input is either

mouse, keyboard or mouse&key. In Figure 16, (0, input, mouse) says to allow input via the mouse in region

0 and (9, input, keyboard) says to allow keyboard input in region 9.

(6) pause - Limits the amount of time that an action is displayed to the user before moving

on to the next action or state. An example is to display text in the window, allow a sufficient amount of time

for the display to be read, and then move on to the next state. In Figure 15, (0, pause, 15) says to set the timer

for 15 seconds and have region 0 in the wait state.

(7) drag - Allows the user to drag a graphic using the mouse. The drag feature may be

incorporated into the mastery tests to increase the complexity of the tasks.

(8) quit - This feature is used to quit the tutorial upon execution of the last state of the

tutorial. If MT performance and answer analysis indicate that the user is not grasping a concept, the tutorial

30

(stl _50, ((7, write, "Don't be afraid to try pressing a button on the mouse."),

(0, input, mouse),

(9, input, keyboard)),

((15 seconds & (past stI 1 50 waitwait), stlL55),

(15 seconds & (past stil110 wait), (assert, wait-wait), st-ljl_50),

(click-left, (assert, left), st-ll_15),

(click-middle & (past st-11 40 2Xwrong), st1 145),

(click-middle & (past st-l1-_35 wrongans), st _140),

(click-middle, (assert, mid), st 1-1_35),

(click-right & (past st_1 1 40 2Xwrong). stl_145),

(click-right & (past stI1 35 wrong_ans), st_1l140),

(click-right, (assert, mid), stll_35),

(("Help" I "I do not know) & (past st1 1 _10 help), st_1_1 45),

(("Help" I "I do not kr ow), (assert, help), stI 165),

((pas, st _ 1 10wrongrns & past st_ 1 -1 35 wrong_ans), st 1 145),

((assert, wrongans), st I_ 135)))

FIGURE 16: input and respondlist Example

terminates the presentation and directs the user to get assistance from the instructor. This terminal is not the

same as the EXIT button. The EXIT button is used by the user to request tutorial termination. In Figure 17,

quit is used to stop the tutorial to allow the user to get assistance from a human.

b. responselist

The response list evaluates the user response, performs answer analysis, and provides the

user with feedback. The response list was designed such that the tutorial can identify the user response and

the state to flow to based upon the response and answer analysis.

The response list is a list of all of the possible responses to the action(s) in the action_list.

The structure of the response list must identify the response and the next state (cfd-id) to go to based on this

31

(st.ll_45, ((3, clear),

(5, clear),

(3, write, "You seem to be having trouble."),

(4, write, "Before progressing any further, get assistance from your instructor."),

(0, quit)),

st_l 1_45)

FIGURE 17: quit Example

response. The response list is order dependent; therefore, the first response in the list that matches the

response of the user is executed. The response list was implemented with a linked list called resnode.

(1) click-left, click-middle, click right, click-any - Refers to the respective button on the

mouse. The click of a mouse button is a response event from the user. This terminal allows the response list

to evaluate the respective response in the response list. In Figure 16, the "click-left" in (click-left, (assert, left),

st 1 1_15) asks if the response event was a click of the left mouse button.

(2) click-help, click-continue or click-exit - Refers to the buttons located in the panel across

the top of the window. The HELP button is on-line help provided to the user. The CONTINUE button is an

accept action that directs the tutorial to move on to the next state in the tutorial flow. The EXIT button quits

the tutorial. These buttons are always present in the window and are global to the tutorial allowing the user

to choose one of these options at any time.

(3) mouse-move - Notifies the response list that the cursor is being moved using the mouse.

This feature was not used in the POST.

(4) integer "seconds" - Limits the length of time that a user may take to give a response.

This feature prevents the tutorial and the user from getting into a dead lock state; the user does not know the

proper response and therefore is not giving any response and the tutorial is waiting for a response before

moving on to the next state. In Figure 16, "15 seconds" in (15 seconds & (past st_ 1 1 50 waitwait),

s1_I_1_55) states to set the timer for 15 seconds and wait that long for a response event. If a response event

32

is not received in that time period, go to state st_1_1 55. Remember, st 1-1-55 represents state 55 of concept

bubble or MT 1.1.

(5) arithmetic operators - The use of the arithmetic operators allows for the interpretation of

where a graphic has been placed within a region. This includes the use of the terminals halfht and halfwid to

assist in centering a graphic in a region of the window.

c. Use of assert and past

In order to determine which state to go to next, answer analysis must occur. This involves

reviewing answers given to past questions or tasks. Therefore, the MT should respond to a response

differently based on a history of performance in the tutorial, assert is a list that maintains all of the states

traversed and the user response for that state. However, the list does not imply path traversal, past verifies the

assert list to check if a state and specified response have occurred in that state. The past feature is very useful

for answer analysis. The choice of the next state to go to can then be based on the current response and

previous responses made at specific states. This feature is also very useful for distinguishing state traversal

for the expert versus the novice user. The novice user will make mistakes. The past feature allows for finding

patterns in the types of wrong answers made and more importantly, ensures that the flow of the tutorial

presentation is to a state that will provide assistance for correcting the pattern of wrong answers.

With the introduction of the past feature, the order of the response list affects the decision

logic. For example, assume state st_ 1)10 has been traversed and st_ 191 0/wait exists in the assert list.

Also, assume the response event is a click of the left mouse button. The evaluation of the response list in

Figure 18 will always evaluate the first response and never evaluate the second response. The first response

(click-left & (past st 1 1 10 wait), (assert, wait_wait), st-l-l_70)

(click-left & (past st 1 1 7(1 wait-wait), st_l_l_55.)

FIGURE 18: Sample Response List

will check the assert list to verify that st__1 10 has been traversed with the response wait. Since the response

list is order dependent, this will always be true and the response will lead to an infinite loop. The evaluation

of the response list in Figure 19, on the other hand, will evaluate the second response the first time the

response list is encountered. The first time that state st 1 1 70 is traversed, only "st 1 10 wait" is in the

assert list; therefore, "st_ 1 70 wait wait" will not be found and the second response will be evaluated. The

33

(click-left & (past st_1_1_70 wait-wait), st 1-1_55)

(click-left & (past st 1_1 _10 wait), (assert, waitwait), st1l1_70)

FIGURE 19: Revised Sample Response List

second time that state st_1_1_70 is traversed, both "st_1_1_10 wait" and "st_1_1_70 wait_wait" will be in

the assert list. When the first response is evaluated, the response will be true and traversal will continue to

another state. The terminals used to represent this data structure in the grammar are:

(1) past - Specify state and response given in that state. Response given cannot be a reserved

word. Refer to Figure 13 for a listing of the reserved words. Refer to Figures 16, 18 and 19 for examples.

(2) assert - Specify response given which cannot be a reserved word. Refer to Figures 16,

18 and 19 for examples.

3. cfd menu

This non-terminal and data structure element allows the tutorial to individualize the presentation

by allowing the user to specify the point in the tutorial he/she wishes to start. If the user chooses a start point

that is too advanced, the MT for that start point will identify this and backtrack until a point of comprehension

is found. The interpreter of the tutorial script generates the window title of the specific tutorial in the main

frame and the start points within the cfdgraph for the specific tutorial.

In the POST, the grammar for the menu appears in Figure 20. The main window will feature the

string of the title "PHYSICS OF SOUND TUTORIAL" and the menulist consists of the title of the seven (7)

choices to appear in the main menu and their respective state identifiers. The choices in the main menu will

be labelled starting with the string "Introduction" and ending with the string "Overall Test."

D. DESCRIPTION OF INTERPRETER

An interpreter was designed to implement a prototype of the POST. The interpreter allows for the use

of any tutorial written in the grammar described in this thesis. A listing of the interpreter is found in Appendix

E.

Prior to interpreting the grammar, the grammar must first be parsed. The parse input is then used to

initialize the tutorial window. The initial frame presents the user with the options for an initial start state. Once

the initial start state is chosen, the actions of that start state are presented in the canvas of the base frame. The

event handling procedures of SunView then accept a response from the user to be interpreted via the input

34

(menu "PHYSICS OF SOUND TUTORIAL"

"Introduction"->st_11_1,

"Source"->st_1_2_1,

"Medium"->st1_3_1,

"Sound"->st_1_4_1,

"Detector"->st 1 5 1,

"Intro Test"->st 1 10 1,

"Overall Tcst"->st_7_1)

FIGURE 20: cfdmenu Example

handler for the canvas. The next state is chosen and executed based on the interpretation of response options

for the current state. The sequence for presenting a state is the same: present the actions, allo.v SunView to

accept the response, interpret the response and then go to the next state. At anytime during the execution of

the tutorial, the user has the option of exiting the tutorial.

1. Present Actions

The process of presenting the actions of a state is first to determine the region that the action is to

occur. Once the region is determined, the action is then executed within that region as described previously.

If the action list consists of more than one action, each action in the action list is executed.

2. Interpret Response

The response is first interpreted by Sunview event handling procedures to determine exactly what

the response was. Then, the corresponding response is found in the response list. If the next state to go to relies

on past answer history, the assert list is included in the response evaluation. Once the appropriate response

and past history have been found in the response list, the next state is executed. If no match with the response

list is identified, the software remains in the same state and waits for further input. However, most states will

35

specify a default transition to be taken in such a case . c.e, users will not be left "stranded" at some point in

the tutorial.

36

V. CONCLUSION AND FUTURE RESEARCH

A. SUMMARY OF CONTRIBUTIONS

A Concept-Flow Diagram (CFD) is a representation of the information presented in a computer-aided

tutorial. The CFD highlights the concepts that are prerequisites to the presentation of other concepts and

identifies where verification of mastery is to be performed within the tutorial. A visualization of this

information, as provided with the CFD, has two key benefits.

First, the CFD provides a functional basis for the design of tutorials. The designers of the computer-

aided tutorial are provided with a tool that assists in the design of the presentation of the tutorial. The CFD

allows for a hierarchical presentation of the tutorial, forward and backward presentation-flow, and answer

analysis that is history sensitive. Designers are also presented with a tool whose symbology is somewhat

familiar and therefore immediately implementable. By using the CFD design methodology, the designers are

able to see the presentation flow prior to an) programming or coding.

Second, the CFD provides a basis for evaluation of tutorial presentation. By using the CFD

methodology, the designers are forced to take a closer look at the presentation flow of the concept goals. The

CFD can identify areas where the presentation is presenting too much information. It can also help to identify

where the ideal place within a presentation occurs to test the user for comprehension. The CFD strongly

encourages non-linear dependency rather than an explicit ordering to the concept-flow of the tutorial

presentation.

By highlighting the flow of presentation as a basis for software design, the CFD enables more realistic

engineering of computer-based tutorials. Automated strategies, such as the CFD interpreter described in this

thesis, are supported by this design technique. In summary, the introduction of the CFD shifts the emphasis

of computer-aided instruction design from modelling of student behavior to design of presentation and

knowledge verification.

B. RECOMMENDATIONS FOR USE

Concept-Flow Diagrams allow the design of tutorials to take place in a specific context of assumed and

demonstrated knowledge. The CFD methodology is immediately useful in tutorials for students with

heterogeneous backgrounds. The CFD does not rely on the users to have some common knowledge base in

37

order to use the tutorial. Therefore, the tutorial can be directed at a more generic audience, from the novice

to the expert, without over-challenging or boring the user. The use of this methodology would greatly enhance

the tutorials used in organizations, such as the U. S. Navy or the Department of Defense, where the personnel

who attend their schools range from the recent high school graduate to individuals with advanced degrees and/

or experience.

Concept-Flow Diagrams are also useful in providing information on how to use interactive software

with complex user interfaces. The users of on-line help within a software package, such as an editor or word

processor, are usually presented with detailed information about the item requested. The use of Concept-Flow

Diagrams would allow the user the option of a detailed explanation or a quick review, pleasing both the

novice user and the expert user of the system who may have just forgotten how a function operates. The CFD

also can place the help provided in the context of recent commands through the use of the answer analysis

assert and past non-terminals.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

This thesis concentrated on the design methodology of the presentation 4low and representation in a

CFD. An extension of this discussien led to answer analysis. A more concentrated effort in the area of answer

analysis is well-deserved. This includes more formally describing mastery test flow and usage.

In order to build tools to generate and evaluate Concept-Flow Diagrams, formal semantics and code

generation are needed. Therefore, two areas recommended for future research are establishing the formal

semantics of Concept-Flow Diagrams and building tools to generate code from Concept-Flow Diagrams.

This leads to actually building the tools to generate and evaluate Concept-Flow Diagrams. The tool or

tools could verify such things as too many bubbles per level, points of entry exist via both the MT and concept

presentation, and that flow is possible, both forward and backward, from MT to MT or bubble to bubble.

In order to enhance the tutorial presentation, the CFD language can be extended to provide vector

graphics capability and animation capability. Currently, the tutorial designers are restricted to stationary

icons. The extended capabilities would allow for using moving objects in a task or presentation.

The last recommendation is the transformation from prototype to working interpreter. The interpreter

designed is a partially functional prototype. Completion of the prototype and implementation as a production

model are necessary.

38

APPENDIX A

LIST OF CONCEPT GOALS FOR

THE PHYSICS OF SOUND TUTORIAL

1. Introduction and Basic Definitions
a. Buttonology
b. Source
c. Medium
d. Sound and Ray Path
c. DetecLor

2. Sound Characteristics
a. Frequency
b. Hertz.
c. Period
d. Compression
e. Rarefaction
f. Longitudinal wave
g. Amplitude
h. Effective Pressure Amplitude
i. Wavelength
j. Wavefront
k. Absolute Sound Pressure Level (ABS SPL)
I. Decibel
m. Broadband
n. Tonals

3. Ray Path Transmission and Loss
a. Direct Path
b. Reflected Path
c. Refracted Path
d. Refracted Surface Reflected Path (RSR)
e. Limiting Ray
f. Shadow Zones
g. Attenuation
h. Scattering
i. Spreading/Divergence
j. Spherical Spreading
k. Cylindrical Spreading
I. Multipath Propagation
m. Critical Angle

39

4. Ocean Characteristics
a. Bathymetry
b. Gradients
c. Isothermal
d. Gradient
e. Thermocline
f. Sound Channel
g. Deep Sound Channel (DSC)
h. Surface Ducts
i. Bottom Bounce
j. Mixed Layer
k. Convergence Zones
I. Reliable Acoustic Path
m. Noise
n. Hydrodynamic Noise
o. Biological Noise
p. Seismic Noise
q. Ocean Traffic Noise
r. Sea Surface Noise

5. Passive Sonar Equation
a. Transmission Loss (TL)
b. Source Level (SL)
c. Noise Level (NL) - ambient noise, platforni noise
d. Array Gain (AG)
e. Recognition Differential (RD)
f. Figure of Merit (FOM)
g. Signal Excess (SE)

6. Sound Velocity Profile (SVP)
a. Temperature
b. Pressure
c. Salinity
d. Deep Sound Channel Axis
e. Noise Spectrum Level
f. Bandwidth
g. Doppler
h. Echo Level

40

APPENDIX B

PHYSICS OF SOUND TUTORIAL SCRIPT

/* AS OF 17 JAN 92,1430 */

(menu "PHYSICS OF SOUND TUTORIAL"
"Introduction" -> st_ 1 11,
"Source" -> st_1_2_1,
"Medium" -> st_1_3_1,
"Sound" -> st_1_4_1,
"Detector" -> st_I_5_l,
"Intro Test" -> st_ 1101,
"Overall Test" -> st_7_l)

detector := "detectorsym. icon"

mouse-sym:= "mousesym.icon"

path "path-sym.icon"

post "post-sym.icon"

source "source-sym.icon"

************* BUTT'ONOLOGY 1.1 *************************/

/********************** INTRODUCTION 1.1.1 ***********************

(st_1__l, ((0, clear), (1, draw, post@(mouseX,mouseY)),
(2, write, "Welcome to the Physics of Sound tutorial"),
(5, write, "Upon completion of this tutorial, you will have enough of an understanding

to complete the Physics of Sound module of your OQS"),
(8, write, "Let's begin. . "), (0, pause, 15)),
st 1 1_5)

41

************************** MOUSE BUTTONS 1.1.2 ******************/

(stl1__5, ((0, clear),
(1, draw, mouse-sym@(mouseX, mouseY)),
(3, write, "In order for you to interact with the computer, you must be familiar with the

keyboard and the mouse. It is assumed that you are already somewhat familiar with the
keyboard since you logged onto the system"),

(4, write, "Notice the figure in the upper lefthand comer of the screen. This is called the
MOUSE. There should be one hooked up to your terminal."),

(5, write, "There are 3 buttons on the top of the MOUSE, each one performing a different
function."), (0, pause, 10)),

st_1_1_10)

(st_l 1_10, ((3, clear),

(4, clear),
(5, clear),
(3, write, "The LEFT button performs an ACTION when clicked once."),

(7, write, "Click the LEFT button on the MOUSE once when you are ready to continue."),
(0, input, mouse), /* allow input with mouse */
(9, input, keyboard)), /* allow input with keyboard only in */

/* region 9 */
((click-left, (assert, left), st-l1l1l 5),

(click-middle & (past st1 1 40 2Xwrong), st-ll_45),
(click-middle & (past st1 1-35 wrongans), st-ll40),
(click-middle, (assert, mid), st 1 1 35),
(click-right & (past st_1 1 40 2Xwrong), st_l_I 45),
(click-right & (past st_1_l_35 wrongans), st 1 140),
(click-right, (assert, right), st_1_1_35),
(15 seconds, (assert, wait), st_1_1_50),
(("Help" I "I do not know") & (past st 1 1_10 help), st-l1l_45),
("Help" I "I do not know", (assert, help), st_1_1_65),
((past st_1_1_10 wrongans) & (past st_1_1_35 wrong-ans), st_ 1_45),
(assert, wrong ans), st_ll35))

(stl I1_.I.-15, ((3, clear), (7, clear), (9, clear),
(5, write, "Very good. That is the correct button.")),
st_1_1_20)

42

(stj..ll _20, ((5, clear),
(3, write, "At this time, the MIDDLE and RIGHT mouse buttons have no function.

Therefore, you will not have to use them."),
(7, write, "Click the LEFT mouse button when you are ready to continue."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, left), st_l25),

(click-middle & (past st_1__40 2X-wrong), st_l1L45),
(click-middle & (past sti_1_35 wrongans), st_1_1_40),
(click-middle, (assert, mid), stll_35),
(click-right & (past st_1_1_40 2Xwrong), st_l_ 145),
(click-right & (past st_1_1_35 wrongans), stll_40),
(click-right, (assert, right), st_1_1_35),
(15 seconds, (assert, wait), st_ll_80),
(("Help" I "I do not know") & (past st_1_1_20 help), st 1-1 45),
("Help" I "I do not know", (assert, help), st-1-1_40),
((past stl_1_20 wrong.ans) & (past st_ 11 35 wrong_ans), st-1-1-45),
(assert, wrong-ans), st11-35))

(st-1-l_25, ((3, clear), (7, clear),
(3, write, "The position of the curFor on the screen can be changed by moving the

MOUSE on the pad."),
(4, write, "Try moving the cursor to different positions on the screen using the mouse."),
(7, write, "Once you are comfortable with moving the cursor, position the cursor over the

CONTINUE button at the top of the screen and click the left mouse button once."),
(0, input, mouse),
(9, input, keyboard)),
((mouse-move, st.ll_30),

(click-continue & (past st_1_5_30 wrongans), st_l_5_l),
(click-continue & (past st-_230 wrongans), st_1_2_5),
(click-continue & ((past st_1_6_25 help) I (past st_1_6_25 wrong-ans)),

(assert, continue), st 1_6 1),
(click-continue & ((past st_1_6_5 help) I (past st_1_6_5 wrong_ans)),

(assert, continue), st1_6 1),
(click-continue & ((past st_1 6_1 help) I (past st_1_6_1 wrongans)),

(assert, continue), st_1_6_1),
(click-continue, (assert, continue), st_l_1 110),
(15 seconds, (assert, wait), st_ll_70),
("Help" I "I do not know", (assert, help), st-ll_75),
(assert, wrong._ans), st-1-1-75))

43

(st_1_1_30, ((3, clear), (4, clear), (7, clear), (9,clear),
(4, write, "Good. Try moving the position of the cursor using the mouse again."),
(7, write, "When you are comfortable with moving the cursor, move the cursor to the

CONTINUE button at the top of the screen and click the LEFT mouse button once."),
(0, input, mouse),
(9, input, keyboard)),
((mouse-move, st.=1_30),
(click-continue, (assert, continue), st II- 10),
(5 seconds, (assert, wait), st.1-1-85),
("Help" I "I do not know" I "How", (assert, help), st-1_1_75),
(assert, wrongans), st-Ll 75))

(st_1_1_35, ((3, clear), (5, clear), (9,clear),
(3, write, "That is not the correct button. Try again.")),
(((past st 1 1_10 mid I past st 1_1 10 right I past st_1 1 10 wrong ans),

(assert, wrong-ans), st.1-1_10),
((past st_l1__20 mid I past st_1_1_20 right I past st_1 1 20 wrong-ans),
(assert, wrong ans), st1L1_20),

((past st_1_1_20 wrong-ans), (assert, wrong-ans), st1120)))

(st_ 1_1_40, ((3, clear), (5, clear), (9, clear),
(3, write, "Remember, the MIDDLE and RIGHT buttons on the mouse DO NOT perform

any function. Therefore, click the LEFT button on the mouse once to perform an
ACTION."),

(7, write, "Try the exerise again.")),
(((past st_1_1_10 mid I past st 1 1 10 right) & (past st 1 1 35 wrong-ans),

(assert, 2X wrong), st--lO110),
((past st_1_1_20 mid I past st 1 1 20 right) & (past st 1 1 35 wrongans),
(assert, 2X-wrong), stj 1 120),

((past st 1 _20 help), st_ 1 _ 1 _20)))

(st_1 _1_45, ((3, clear), (5, clear),
(3, write, "You seem to be having trouble."),
(4, write, "Before progressing any further, get assistance from your instructor."), (0, quit)
, st-_445)

44

(stll_50, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past stl1l_50 waitwait), st1L1_55),

(15 seconds & (past st 1-1-10 wait), (assert, wait-wait), st 1 1-50),
(click-left, (assert, left), st 1_115),
(click-middle & (past st11 40 2X-wrong), st_1_1_45),
(click-middle & (past st11 35 wrong-ans), st_1_1_40),
(click-middle, (assert, mid), st_1_1_35),
(click-right & (past st__1_40 2Xwrong), st_1_1_45),
(click-right & (past st_1_1_35 wrong-ans), st 1-1-40),
(click-right, (assert, right), st_1_1_35),
(("Help" I "I do not know") & (past st_1_1_10 help), st..1.45),
("Help" I "I do not know", (assert, help), st.L 1 65),
((past st_1_1_10 wrong-ans & past st_1_1_35 wrong.ans), st 1-1_45),
(assert, wrong-ans), st-1-1-35))

(st-1-1_55, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st.11_45),
("No" I "NO" I "no" I "N" I "n", (assert, checkpt), st-1_1_60),
(assert, wrong-ans), st_1_1_45))

(st_1_l_60, ((0, clear),
(5, write, "It is assumed that you wish to EXIT."), (O,quit))'
stll_60)

(st-l11_65, ((3, clear), (5, clear),
(3, write, "Let's take a look at the MOUSE again.")),
(assert, help), stil110)

45

(st_1_1_70, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st 1 _170 waitwait), st 1 1 55),

(15 seconds & (past st_1_190 wait), (assert, wait-wait), st_1_1_70),
(click-left & (past st_1_1_140 help I past st-1.1140 wrongans), st 1_1_140),
(click-left, (assert, left), st I 1 15),
(click-middle & (past stAl1_40 2Xwrong), st_1_1_45),
(click-middle & (past st1135 wrong-ans), st-1-1_40),
(click-middle, (assert, mid), stll_35),
(click-right & (past st_1_1_40 2Xwrong), st 1_1_45),
(click-right & (past st_1_1_35 wrong-ans), st_1_1_40),
(click-right, (assert, right), st_1_1_35),
(("Help" I "I do not know") & (past st_1_1_10 help), st.1145),
("Help" I "I do not know", (assert, help), st 1 1 65),
((past st_1_1_10 wrong-ans & past st_1_1_35 wrong-ans), st-1-1-45),
(assert, wrongans), st_1_1_35))

46

(st-_175, ((3, clear), (7, clear), (9, clear),
(3, write, "You did not find the CONTINUE button. You must first move the position

of the cursor so that the cursor is positioned within the rectangle labelled 'CONTINUE.'
Once you have positioned the cursor, click the left mouse button once."),

(5, write, "Locate the CONTINUE button and click the left mouse button once."),
(0, input, mouse),
(9, input, keyboard)),
((click-continue & (past st_1_1_175 help I past st__1_175 wrongans),
st_11_160),

(click-continue & (past st11-165 help I past st_1_1_165 wrong-ans),
st_1 _ 160),

(click-continue & (past st11-160 help I past st_1_1_160 wrong ans),
st_1_1_160),

(click-continue & (past st11-150 help I past st_1_1_150 wrongans),
st_ 1 _ 150),

(click-continue & (past st-i 1_145 help past st_1 1_145 wrong_ans),
st _1_1140),

(click-continue & (past st 11140 help I past st_1 1 140 wrongans),
st 1_ 140),

(click-continue & (past st_ 1_1 16 help I past st_1 1_116 wrong-ans),
st_ 1 1.10),

(click-continue & (past st-1j1 115 help I past st 1 1 115 wrong-ans),
st_ 1 1910),

(click-continue & (past st1_1 110 help t past st_1 1_110 wrongans),
st_1_1 110),

(click-continue, (assert, continue), st_ 1_6 1),
(5 seconds, (assert, wait), st_1_l_90),
("Help" I "I do not know", (assert, help), st-1145),
(assert, wrong-ans), st 1_1 _45))

47

(st-l1l_80, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st-1- 180 wait_wait), st_1_1_55),

(15 seconds & (past st_1_1_20 wait), (assert, waitwait), st_1_1 80),
(click-left, (assert, left), st91_1_25),
(click-middle & (past st_1_ 40 2X.wrong), st11 45),
(click-middle & (past st11 35 wrong-ans), stll_40),
(click-middle, (assert, mid), st_1_1_35),
(click-right & (past st_1_1_40 2Xwrong), st1-145),
(click-right & (past st__1_35 wrong-ans), st-1-1 40),
(click-right, (assert, right), st_1_1_35),
(("Help" I "I do not know") & (past st_1_1_10 help), st_1_1_45),
("Help" I "I do not know", (assert, help), st-l-l_65),
((past st_1_1_10 wrong-ans & past st_1_1_35 wrong.ans), st-1-145),
(assert, wrong-ans), st11-35))

(st_1_1_85, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_1_85 waitwait), st_1_1_55),

(15 seconds & (past st_ 1 _120 wait), (assert, waitwait), st_ 1 _1 85),
(mouse-move, st_1_1_30),
(click-continue, (assert, continue), stl_6_1),
("Help" I "I do not know" I "How", (assert, help), st_1_1_75),
(assert, wrongans), st_1_1_75))

(st-l190, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st-1j190 waitwait), stll_55),

(15 seconds & (past stl1_20 wait), (assert, wait-wait), st 1 1_90),
(click-continue, (assert, continue), st_1_6_1),
("Help" I "I do not know", (assert, help), stl 1 45),
(assert, wrongans), st-l1l_45))

************************* End MOUSE BUTTONS **************************

48

************************ MAIN FRAME BUTTONS *

(stl _ 1 110, ((0, clear),
(1, write, "Notice the 3 buttons that appear at the top of the screen."),
(2, write, "The buttons are labelled HELP, CONTINUE, and EXIT."),
(4, write, "These 3 buttons will always appear at the top of the screen while using the

Physics of Sound tutorial."),
(7, write, "Let's take a look at how these buttons operate."),
(9, write, "Click the mouse on the CONTINUE button when you are ready to move on

... .11),

(0, input, mouse),
(9, input, keyboard)),
((click-continue, (assert, continue), st__1_120),

(5 seconds, (assert, wait), st_ 1 1 115),
("Help" I "I do not know", (assert, help), st-1-1_75),
(assert, wrong-ans), st-1-1j75))

(stlL1 15, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st1_1 15 wait-wait), st11 16),

(15 seconds & (past st_1 1 110 wait), (assert, waitwait), st 1 1 15),
(click-continue, (assert, continue), st 1_1 120),
("Help" I "I do not know", (assert, help), st-1-1-75),
(assert, wrong-ans), st- 1175))

(st_ l 16, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st1_1_75),
("No" I "NO" I "no" I "N" I "n", (assert, checkpt), st1l1_60),
(assert, wrongans), st.1_1_75))

49

*************************** HELP BUTTON **********************

(stI- 1 120, ((0, clear),
(1, write, "The HELP button can be used at any time. The button is designed to assist you

when you are unable to determine the function of a specific feature on the screen."),
(4, write, "To use the HELP button, move the cursor to the button labelled HELP located

in the upper lefthand corner of the screen and click the left mouse button once."),
(5, write, "You will then be guided through the use of the particular function that you

requested."),
(7, write, "Click the mouse on the HELP button"),
(0, input, mouse),
(9, input, keyboard)),
((click-help & (past st_1_6_30 help I past st-1-130 wrongans), (assert, help-button),

st_ 1-620),
(click-help & (past st_1_6_25 help I past st-1-1_25 wrong-ans), (assert, helpbutton),

st 1 _620),
(click-help & (past st_1_6_20 help I past st-1-1_20 wrong-ans), (assert, helpbutton),

st_ 16 20),
(click-help, (assert, helpbutton), st_1_140),
(5 seconds, (assert, wait), st_ 1_1 _125),

("Help" I "I do not know", (assert, help), stI-l _130),
(assert, wrong-ans), st 11 130))

(st1_125, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1l_l130 wait & past st 1 1_125 waitwait), st_1_1_45),

(15 seconds & (past st_1_1_130 wait), (assert, waitwait), st 1 1_125),
(15 seconds & (past st_1_1_120 wait & past st_1 1_125 waitwait), st_1l1135),
(15 seconds & (past st_1_l_120 wait), (assert, wait_wait), st_ 1 125),
(click-help, (assert, help-button), st_ __ 140),
("Help" I "I do not know", (assert, help), stlI 130),
(assert, wrong-ans), stl 3I_))

50

(st 1_1_130, ((1, clear), (4, clear), (5, clear), (7, clear),
(1, write, "You did not correctly identify the HELP button. First, move the position of

the cursor so that the cursor is positioned within the rectangle labelled 'HELP.' Once you
have positioned the cursor, click the left mouse button once."),

(5, write, "Locate the HELP button and click the left mouse button once."),
(0, input, mouse),
(9, input, mouse)),
((click-help, (assert, help.button), stl 1_140),

(5 seconds, (assert, wait), st_1_1_125),
("Help" I "I do not know", (assert, help), st.1_ll45),
(assert, wrong-ans), stl1L45))

(st-1.l_135, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st-ll1 30),
("No" I "NO" I "no" I "N" I "n", (assert, checkpt), stl11_60),
(assert, wrong-ans), st-l1_130))

************************ End HELP BUTTON *****************************

51

/*********************** CONTINUE BUTTON **************************/

(st_1_1 140, ((0, clear),
(1, write, "You have already seen the use of the CONTINUE button. The CONTINUE

button is used to perform an action, such as moving the position of an icon or to accept
input."),

(4, write, "To use the CONTINUE button, move the cursor to the button labelled
CONTINUE located in the upper left of the screen and click the left mouse button once."),

(5, write, "Move the cursor to the CONTINUE button and click left mouse button once
when you are ready to continue. .

(0, input, mouse),
(9, input, keyboard)),
((click-continue & (past st_l 5_10 wrongans), stl_5_1),

(click-continue & (past stil4_5 wrongans), st-l_4_5),
(click-continue & (past st_1_4_1 wrong ans), st1_4_1),
(click-continue & (past st_1_3_5 wrong_ans), st1_3_5),
(click-continue & (past st_1 3 1 wrong ans), stl_3_l),
(click-continue & (past st_1_3_1 wrong.ans), st1-3l1),
(click-continue, (assert, continue), st 1 1_160),
(5 seconds, (assert, wait), st_ 1 _1 _145),

("Help" I "I do not know", (assert, help), st 1 175),
(assert, wrong-ans), sti1175)

(st_1_1_145, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1 _1 140 wait & past st_1_1_145 wait_wait), st_1_1 150),

(15 seconds & (past st 1 1_140 wait), (assert, wait-wait), st_ 1 1 _145),

(click-continue, (assert, continue), st 1 1 160),
("Help" I "I do not know", (assert, help), st 1 1 75),
(assert, wrong-ans), st- 1 1 75

(st_ 1 _ I _ 150, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st 1 1 75),
("No" I "NO" I "no" I "N" I "n", (assert, check-pt), st-1-1-60),
(assert, wrong_.ans), st_l1L75))

******************* End CONTINUE BUTTON **********************/

52

**************************** EXIT BUTTON ***************************/

(st.l1l_160, ((0, clear),
(1, write, "The EXIT button is used when you are ready to stop working on the Physics

of Sound tutorial."),
(3, write, "If you are in the midddle of the tutorial when you EXIT, the system will keep

track of where you left off and you will restart at this point the the next time you logon."),
(4, write, "The EXIT button will always be located in the upper righthand comer of the

screen."),
(6, write, "We will not experiment with the EXIT button at this time since it is assumed

you wish to continue on with the tutorial."),
(7, write, "Click the mouse on the CONTINUE button when you are ready to move on.

(0, input, mouse),
(9, input, keyboard)),
((click-continue, (assert, continue), stl_6_l),

(5 seconds, (assert, wait), st 1 _1 _165),

("Help" I "I do not know", (assert, wait), st-1 1_75),
(assert, wrong-ans), st 1175))

(st-l1l_165, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1 _1 160 wait & past st_1 1 165 waitwait), st-1-1-175),

(15 seconds & (past st_ 1 _1 _160 wait), (assert, wait_wait), st-1_1_165),
(click-continue, (assert, continue), st_1_6_1),
("Help" I "I do not know", (assert, wait), st-1-1_75),
(assert, wrong-ans), st1-1)75)

(st_1_l_175, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), stl1175),
("No" I "NO" I "no" I "N" I "n", (assert, checkpt). st_ 1.60),
(assert, wrongans), st1_1_75))

/************************* End EXIT BUTTON *************************

53

************************* MASTERY TEST 1.6 ************************

(stl1_6_1, ((0, clear),
(1, draw, mouse-sym),
(4, write, "As you know, the mouse is required for interaction with the Physics of Sound

tutorial."),
(7, write, "Click the left mouse button once on the CONTINUE button to move on to the

next task."),
(0, input, mouse),
(9, input, keyboard)),
((click-continue, (assert, continue), stL1-6&20),

(5 seconds, (assert, wait), stl_-1-6_5),
("Help" I "I do not know", (assert, help), st_1_1_25),
(assert, wrong.ans), st 19 -25))

(st_1_6_5, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1_6_5 wait_wait), stl6_10),

(15 seconds & (past st_1_61 wait), (assert, wait wait), st-1_6_5),
(click-continue, (assert, continue), st-1-1 10),
("Help" I "I do not know", (assert, help), st I 1 25),
(assert, wrong-ans), stil__25))

(st_ 1 610, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st_1_125),
("No" I "NO" I "no" I "N" I "n", (assert, checkpt), stl1__60),
(assert, wrongans), stl-l_25))

(st_ 1._6_20, ((0, clear),
(1, write, "Experiment with the HELP button until you feel comfortable with its use."),
(7, write, "Click the mouse once on the CONTINUE button when you are ready to move

on ..."),

(0, input, mouse),
(9, input, keyboard)),
((click-help, (assert, help-button), stj1_6_20),

(click-continue, (assert, continue), stl_2_ 1), /* NEXT MT */
(5 seconds, (assert, wait), st_1_6_25),
("Help" I "I do not know", (assert, help), st I 1 120),
(assert, wrong-ans), st-191 120))

54

(st_1_6_25, ((7, write, "Don't be afraid to try pressing a button on the mouse."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st-l_6_20 wait-wait), st_1_6_25),

(15 seconds & (past st.l_6_20 wait), (assert, wait-wait), st-16_30),
(click-help, (assert, help-button), st.16_20),
(click-continue, (assert, continue), stl_2_l), /* NEXT MT */
("Help" I "I do not know", (assert, help), st_11120),
(assert, wrong-ans), stl11 120))

(stl_6_30, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), stll_120),
("No" I "NO" I "no" I "N" I "n", (assert, check-pt), st1l1-60),
(assert, wrong-ans), st-l1l_120))

***************************** End MT 1.6 ***************************

***************************** SOURCE 1.2 **************************

(stl_2_1, ((0, clear),
(1, write, "Now that you have become familiar with the use of the mouse, let's move on

to another topic."),
(2, write, "In order to study the physics of sound, there are 3 basic properties that must

exist:"),
(3, write, "SOURCE, SOUND, and DETECTOR"),
(4, write, "First, let's dicuss the term SOURCE."),
(0, pause, 30)),
st_1_25)

55

(st..l2_5, ((0, clear),
(1, draw, source),

(3, write, "A SOURCE is any object that moves or vibrates disturbing the medium around
it."),

(5, write, "The SOURCE is represented by a FISH, as is shown in the upper lefthand
comer of the screen."),

(8, write, "Locate the SOURCE by moving the position of the mouse to the FISH and
click the left mouse button once...

(1, input, mouse)),
((click-left, (assert, left), st_- 1_2_10),

((click-middle I click-right) & (past st_1_2_25 wrong-ans), (assert, help), st_1_2_30),
(click-middle, (assert, mid), st 1 2_25),
(click-right, (assert, right), st_1_2_25),
(5 seconds, (assert, wait), stl_2 15),
("Help" I "I do not know", (assert, help), st-1-2-30),
(assert, wrongans), st 1_2_30))

(st_1 2 10, ((3, clear), (5, clear), (8, clear),
(3, write, "Great! You were able to locate the SOURCE."),
(4, write, "Now, what can you do with the SOURCE?"),
(5, write, "You cannot move the SOURCE since in a real world situation you will have

no control over the location of a source."),
(0, pause, 45)),
st_1_3_1)

(st_1_2_15, ((7, write, "Don't be afraid to move the cursor over the SOURCE location and
pressing a button on the mouse."),

(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st 1_2_15 waitwait), st_1_2_20),

(15 seconds & (past st_1_2_5 wait), (assert, wait-wait), st1-2 15),
(click-left, (assert, left), st_ 12 10),
((click-middle I click-right) & (past st_1_2_25 wrongans), (assert, help), st_1_2_30),
(click-middle, (assert, mid), st 1 2_25),
(click-right, (assert, right), st_1_2_25),
("Help" I "I do not know", (assert, help), st-lL2-30),
(assert, wrong-ans), st1230))

56

(stl_2_20, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), stl_2_30),
("No" I "NO" I "no" I "N" I "n", (assert, check-pt), st-l 1160),
(assert, wrongans), st-l2_30))

(st_1_2_25, ((3, clear), (5, clear), (8, clear),
(3, write, "That is the incorrect button. Remember, the MIDDLE and RIGHT mouse

buttons do not perform any function. Try again.")),
stI_2_5)

(stjl_2_30, ((3, clear), (5, clear), (8, clear),
(3, write, "Let's review how to move the cursor using the mouse.")).
(assert, help), st.ll_25)

****************************** END SOURCE *

************************** MASTERY TEST 1.7 *************************

/* DO NOT NEED MT AFTER SOURCE MOD -- TOO SIMPLISTIC

*************************** MEDIUM 1.3 ******************************

(st-13.1, ((0, clear),
(1, write, "A MEDIUM is a substance regarded as the means of transmission of a force

or effect."),
(4, write, "Becasue the POST deals specifically with underwater sound, the MEDIUM

through which the sound travels is SEA WATER."),
(7, write, "The successful transmission of sound is dependent on the ability of the

MEDIUM to react to changes in pressure originated by the sound SOURCE."),
(8, write, "Click the CONTINUE button when you are ready to move on. .

(0, input, mouse)),
((click-continue, (assert, continue), stl_3_5),

(300 seconds, stl_3_5),
(assert, wrong-ans), stl1-140))

57

(st-l_3_5, ((0, clear),
(1, write, "To pass on sound, the MEDIUM must have the capability to respond to

variations or changes in the SOURCE pressure fluctuations."),
(4, write, "Sea water possess the quality called ELASTICITY. This means that the sound

pressures causes physical movement of the water molecules which return to their normal
state following the passage of SOUND."),

(7, write, "The travel of sound through a MEDIUM is called PROPOGATION."),
(8, write, "Click the CONTINUE button when you are ready to move on..."),
(0, input, mouse)),
((click-continue, (assert, continue), st-l_4_l),

(300 seconds, st_l_4_l),
(assert, wrongans), st11l140))

*************************** End MEDIUM *****************************

************************** MASTERY TEST 1.8 ************************

/* DO NOT NEED MT AFTER MEDIUM MODULE -- TOO SIMPLISTI */

*************************** SOUND 1.4 *******************************

(stl_4_1, ((0, clear),
(1, draw, path),
(3, write, "SOUND is a mechanical wave motion that is generated or propagated in an

elastic MEDIUM."),
(4, write, "SOUND is represented by a line. Since SOUND has direction, the line will

point in the direction that the sound is travelling. In the upper lefthand corner of the screen,
you can see a SOURCE with its SOUND."),

(8, write, "Click the CONTINUE button when you are ready to move on..."),
(0, input, mouse)),
((click-continue, (assert, continue), stl_4_5),

(300 seconds, st-l_4_5),
(assert, wrong-ans), st- 1-1140))

58

(stl_.4 _5, ((3, clear), (4, clear),
(3, write, "This line is called a RAY PATH."),
(8, write, "Click the CONTINUE button when you are ready to move on. ..

(0, input, mouse)),
((click-continue, (assert, continue), st_1_5_l),

(300 seconds, st_l_5_l),
(assert, wrong-ans), st1_1-140))

/********************** End SOUND ***********************************

/*********************** MASTERY TEST 1.9 ***************************

/* DO NOT NEED MT AFTER SOUND MOD -- TOO SIMPLISTIC

**************************** DETECTOR 1.5 ***************************

(st-l_.5-1, ((0, clear),
(1, draw, detector),
(2, write, "A DETECTOR is the RECEIVER of SOUND."),
(4, write, "The DETECTOR is represented by a as is located in the

upper lefthand corner of the screen."),
(5, write, "Locate the DETECTOR by placing the cursor in the DETECTOR and click

the left mouse button once."),
(1, input, mouse)),
((click-left, (assert, left), st.1_5 10),
((click-middle I click-right) & (past st_ 1 5_25 wrong-ans), (assert, help), st_ l_2-30),
(click-middle, (assert, mid), st_1_5_25),
(click-right, (assert, right), stl 5_25),
(5 seconds, (assert, wait), st_1 5_15),
("Help" I "I do not know", (assert, help), stl1_5_30),
(assert, wrong ans), st 1-530))

59

(stl_5_10, ((3, clear), (5, clear), (8, clear),
(3, write, "Great! You were able to locate the DETECTOR."),
(4, write, "Now, what can you do with the DETECTOR?"),
(7, write, "The position of the DETECTOR can be determined by you. To change the

position of the DETECTOR, position the cursor inside the DETECTOR. Hold down the
left mouse button and drag the mouse until the DETECTOR moves to the position you want
it and then release the left mouse button."),

(8, write, "Click the CONTINUE button when you are ready to move on..."),
(0, input, mouse)),
((click-continue, (assert, continue), st-l 5_35),

(300 seconds, stl 5-35),
(assert, wrong.ans), st-1 19140))

(stil 5-15, ((7, write, "Don't be afraid to move the cursor over the DETECTOR location
and pressing a button on the mouse."),

(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st1_ 515 waitwait), st_1_520),

(15 seconds & (past st_1_5_5 wait), (assert, wait-wait), st_1_5_15),
(click-left, (assert, left), st-1-510),
((click-middle I click-right) & (past st_1_5_25 wrong-ans), (assert, help), st_1_5_30),
(click-middle, (assert, mid), st_ I 525),
(click-right, (assert, right), st_1_5_25),
("Help" I "I do not know", (assert, help), st-l 5-30),
(assert, wrong-ans), st1530))

(st_5_20, ((0, clear),
(5, write, "You have not taken action."),
(8, write, "Do you want help?"),
(9, input, keyboard)),
(("Yes" I "YES" I "yes" I "Y" I "y", (assert, help), st_ 1 5_30),
("No" I "NO" I "no" I "N" I "n", (assert, check-pt), st_1-1_60),
(assert, wrongans), st1-5-30))

(st._l5_25, ((3, clear), (5, clear), (8, clear),
(3, write, "That is the incorrect button. Remember, the MIDDLE and RIGHT mouse

buttons do not perform any function. Try again.")),
(assert, wrongans), st1 5 1)

(st_ _2_30, ((3, clear), (5, clear), (8, clear),
(3, write, "Let's review how to move the cursor using the mouse.")),
(assert, help), st-l1l_25)

60

(st_1_5_35, ((2, clear), (3, clear), (4, clear), (7, clear),
(2, write, "Try changing the position of the DETECTOR."),
(4, write, "Click the CONTINUE button when you are ready to move on..."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, move-detector), st 1_5_50),

(click-continue, (assert, continue), st_ 110_1),
(15 seconds, (assert, wait), st_1_5_45),
("Help" I "I do not know", (assert, help), st-1-5 1),
(assert, wrong-ans), stl_5_ 1))

(st-1_5_40, ((0, clear, detector@(detector.x, detector.y)),
(1, draw, detector@(mouseX, mouseY))),
st_1_5_35)

(st_1_5_45, ((7, write, "Don't be afraid to change the DETECTOR location."),
(0, input, mouse),
(9, input, keyboard)),
((15 seconds & (past st_1L5_45 wait-wait), stL1_5_20),

(15 seconds & (past st-1-5_35 wait), (assert, wait-wait), st_1_5_45),
(click-continue, (assert, continue), st 1 10 1),
("Help" I "I do not know", (assert, help), st I5_1),
(assert, wrong-ans), st-lL5_1))

(st 1_5_50, ((1, clear, detector@(detector.x, detector.y)),
(1, draw, detector@(mouseX, mouseY))),
st_ 1 5_35)

*************************** End DETECTOR ****************************

************************** MASTERY TEST 1.10 ************************

(st_I1l, ((0, clear),
(1, draw, source@(mouseX, mouseY)),
(1, draw, path@(mouseX, mouseY)),
(1, draw, detector@(mouseX, mouseY)),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse)),
((click-left, (assert, movedetector), st_1 10 10),

(45 seconds, (assert, wait), st1l10 20),
st_1_10 20))

61

(stl-MOA0, (1, clear, detector@ (detector.x, detector.y)),
(1, draw, detector@ (mouseX, mouseY))),
((click-left & (mouseX <= sound.x + halfwid & mouseX >= sound.x - halfwid &

mouseY <= sound.y + halfht & mouseY >= sound.y - halfht), (assert, hit), st_1109 5),
(click-left & ((past st_1_10_10 miss-left) I

(past st_1_10_10 miss - ight) I
(past st_1_10_10 miss-low) I
(past st_1-10_10 miss-.high)), (assert, help),

st_1_10_30),
(click-left & (mouseX < sound.x - halfwid), (assert, miss-left), st-1-0-20),
(click-left & (mouseX > sound.x + halfwid), (assert, missjight), st_1_10_20),
(click-left & (mouseY < sound.y - halfht), (assert, missilow), stL110-20),
(click-left & (mouseY > sound.y + halfht), (assert, miss-high), st-1-O9O2),
(45 seconds, (assert, wait), st_1_10_20))

(st_ 1 _ 10- 15, ((7, clear),

(7, write, "Very good. You positioned the DETECTOR correctly.")

St_7_1)

(st1 _1020, ((7, clear),
(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES" I "Yes" I"yes" I "y" I "Y"), (assert, help), sLL15_1),

(("NO" I "No" I "no" I "n" I "N") & (past stilO_ -10 miss left) &
((past st_1_10_30 move detector) I (past st 1 10_30 miss..again)),

(assert, help), st_1-_1-45),
(("NO" I "No" I "no" I "n" I "N") & (past st_ 1 _10 10 miss left), stilO 025),
(("NO" I "No" I "no" I "n" I "N") & (past st..1.l0_10 miss_right) &

((past st_ 1 _10_30 move detector) I (past st_ 1 10 I)30 missagain)),
(assert, help), st_1 _1_45),

(("NO" I "No" I "no" I "n" I "N") & (past st..1-1)_10 miss...right), st__1 __10__35),

(("NO" I "No" I "no" I "nl" I "N") & (past stilO_ -10 miss_low) &
((past st-1-10_30 move-detector) I (past st....l10_30 miss...again)),
(assert, help), st-1-145),

(("NO" I "No" I "no" I "n" I "N") & (past st..1-10_ 10 miss...ow), stllO.040),
(("NO" I "No" I "no" I "n" I "N") & (past st..1...10_ 10 misshigh) &

((past st_1_10_30 move_detector) I (past sti_ 10_30 miss-again)),
(assert, help), st-_ 45),

(("NO" I "No" I "no" I "n" I "N") & (past st_ 1 __10 10 misshigh), st_ 1 _10__45),

(300 seconds, (assert, wait), st_1_160)))

62

(st-l_10_25, ((7, clear),
(4, write, "You moved the DETECTOR too far to the left."),
(7, write, "Try again.")),
st 1 101)

(st.1_10 30, ((4, clear), (7, clear),
(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some part of

the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move detector), st_1_10_10),

(assert, miss-again), st1-10_20))

(st_l_10 35, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),
st 1 101)

(stl 1040, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),
st_ 1101)

(stl_10_45, ((7, clear),
(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),
st_ 1101)

**************************** End DETECTOR ***************************

********************* End of INTRO & BASIC DEFS bubble /

63

/*****************MASTERY TEST 7 **************

/***********This is the overall MT, Level I of CFD

/* TASK - Direct Path ~

(st-j7_1, ((0, clear),
(1, draw, source@(mouseX, mouseY)), /* center pt of mouse*/
(1, draw, path@(mouseX, mouseY)), /* Direct Path *
(1, draw, detector@ (mouseX, mouseY)),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse),
(9, input, keyboard))
((click-left, (assert, move-detector), st_1_7_10),
(45 seconds, (assert, wait), stilO 020),
("Help" I "I do not know" I "How", (assert, help), stiS 510),
st_1_20))

(st-1-390, ((1, clear, detector@ (detector.x, detector.y)),
(1, draw, detector@ (mouseX, mouseY))),
((click-left & (mouseX <= sound-direct.x + halfwid &
mouseX >= sound_direct.x - halfwid &
mouseY <= sound-direct.y + halfht &
mouseY >= sound-direct.y - halfht), (assert, hit), stl17_15),

(click-left & ((past st_ 1_7_10 miss-left) I (past st_1 7_10 miss-right)
I (past st_ 1_7_10 miss-low) I (past st_ 1-7 10 miss high)),
(assert, help), st_1_7_30),

(click-left & (mouseX < sound-direct.x - halfwid),
(assert, miss-left), st...L7-.20),

(click-left & (mouseX > sound-direct.x + halfwid),
(assert, miss-fight), st-17_20),

(click-left & (mouseY < sound-direct.y - halfbt).
(assert, miss-low), st__7_20),

(click-left & (mouseY > sound_direct.y + halfht).
(assert, miss high), st_1_l..7_.20),

(45 seconds, (assert, wait), st__7_20))

(st-.1_.7_1.5, ((7, clear),

(7, write, "Very good. You positioned the DETECTOR correctly.")

st_7_100)

(st_1_7_20, ((7, clear),
(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES" I "Yes" I "yes" I "y" I "Y"), (assert, help), st_1_5_1),

(("NO" I "No" I "no" I "n" I "N") & (past stl_7_10 miss-left) &
((past st_1_7_30 movedetector) I (past st-1730 miss-again)),
(assert, help), st_1_1_45),

(("NO" I "No" I "no" I "n" I "N") & (past st.1 7 10 miss-left), st_1_7_25),
(("NO" I "No" I "no" I "n" I "N") & (past st_1_7_ 10 miss-right) &

((past st_1_7_30 movedetector) I (past stj1730 miss-again)),
(assert, help), st_1_1_45),

(("NO" I "No" I "no" I "n" I "N") & (past st1-7_ 10 miss ..right), st_1_7_35),
(("NO" I "No" I "no" I "n" I "N") & (past st 1.7 10 miss-low) &

((past st_1_7_30 movedetector) I (past stj1730 miss.again)),
(assert, help), st_1 1_45),

(("NO" I "No" I "no" I "n" I "N") & (past st1 7 10 miss-low), st-1_7 40),
(("NO" I "No" I "no" I "n" I "N") & (past st 1 7 10 misshigh) &
((past st_1_7_30 move_detector) I (past st 1 7 30 miss-again)),
(assert, help), st_1_1 45),

(("NO" I "No" I "no" I "n" I "N") & (past stl17 10 miss-high), st_1_7_45),
(300 seconds, (assert, wait), st 1 1 60))

(st_1-7-25, ((7, clear),
(4, write, "You moved the DETECTOR too far to the left."),
(7, write, "Try again.")),
st_1_7_1)

(stl7_30, ((4, clear), (7, clear),
(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some part of

the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move-detector), st_ 1 7_ 10).

(assert, miss-again), st 1_7 20))

(stl_7_35, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),
stl_71)

65

(st_1l._7_40, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),
st_1_7_1)

(st_ 1_7_..45, ((7, clear),
(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),
st_1_7_1)

/* End TASK Direct Path */

/* TASK Reflected Surface Refracted (RSR) */

(st_7 100, ((0, clear),
(1, draw, source@(mouseX, mouseY)),
(1, draw, path@(mouseX, mouseY)), /* RSR Path */
(1, draw, detector@(mouseX, mouseY)),
(3, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(0, input, mouse),
(9, input, keyboard)),
((click-left, (assert, move-detector), st_1 7_ 110),

(45 seconds, (assert, wait), st_1_10_120),
("Help" I "I do not know" I "How", (assert, help), st-1-5-1),
st_17120))

(stl_7_l 10, ((1, clear, detector@(detector.x, detector.y)),
(1, draw, detector@(mouseX, mouseY))),
((click-left & (mouseX <= soundRSR.x + halfwid & mouseX >= soundRSR.x -

halfwid & mouseY <= soundRSR.y + halfht & mouseY >= sound_RSR.y - halfht),
(assert, hit), stl_7_1 15),

(click-left & ((past st_1 7_110 miss-left) I (past st_ 1_7_110 miss_right)
I (past st_1 7 110 misslow) I (past st_1 7 110 miss_high)),

(assert, help), st_1_7_130),
(click-left & (mouseX < soundRSR.x - halfwid), (assert, miss_left), st_1_7 120),
(click-left & (mouseX > soundRSR.x + halfwid), (assert, miss-right), st_1_7_120),
(click-left & (mouseY < soundRSR.y - halfht), (assert, miss_low), st_1-7 120),
(click-left & (mouseY > soundRSR.y + halfht), (assert, misshigh), st_1_7 120),
(45 seconds, (assert, wait), st_1_7_120)))

66

(stl_7_115, ((7, clear),
(7, write, "Very good. You positioned the DETECTOR correctly."),
(0,quit)),
st_1_7_115)

(stl 7_ 120, ((7, clear),
(4, write, "Do you need HELP in how to move the DETECTOR?"),
(9, input, keyboard)),
((("YES" I "Yes" I "yes" I "y" I "Y"), (assert, help), st_1_5_1),

(("NO" I "No" I "no" I "n" I "N") & (past st.1.7_ 110 miss-left) &
((past st_1_7_130 move_detector) I (past stj17130 miss-again)),

(assert, help), st_1_1_45),
(("NO" I "No" I "no" I "n" I "N") & (past st 1 7 110 miss left), st_ 17 125),
(("NO" I "No" I "no" I "n" I "N") & (past st 1 7_ 110 miss-right) &
((past st_1_7_130 movedetector) I (past st 1 7_130 missagain)),

(assert, help), st-l 1 45),
(("NO" I "No" I "no" I "n" I "N") & (past st .1, 7 110 missright), st_ 1 _7_ 135),
(("NO" I "No" I "no" I "n" I "N") & (past st 1 _7 110 misslow) &
((past st_1_7_130 move_detector) I (past st_1 7_130 miss.again)),

(assert, help), st_1_1_45),
(("NO" I "No" I "no" I "n" I "N") & (past st 1 7 110 misslow), st_1_7 140),
(("NO" I "No" I "no" I "n" I "N") & (past st_ 1 7 110 misshigh) &

((past st_1 7_130 move_detector) I (past stL1 7 130 missagain)),
(assert, help), st_ 1_ 1_45),

(("NO" I "No" I "no" I "n" I "N") & (past st1-7_ 110 miss.high), st 1 7 145),
(300 seconds, (assert, wait), st I 1 60)

(st_1_7_125, ((7, clear),
(4, write, "You moved the DETECTOR too far to the left."),
(7, write, "Try again.")),
st_1_7100)

(st-l_7 130, ((4, clear), (7, clear),
(4, write, "To position the DETECTOR correctly, the RAY PATH must hit some pan of

the DETECTOR."),
(7, write, "Move the DETECTOR so that the SOUND will hit the DETECTOR."),
(1, input, mouse)),
((click-left, (assert, move-detector), st_ 1 7 110),

(assert, missagain), stl_7_120))

67

(st1._.7_135, ((7, clear),
(4, write, "You moved the DETECTOR too far to the right."),
(7, write, "Try again.")),
st_ 17100)

(stl7_..140, ((7, clear),
(4, write, "You moved the DETECTOR too far to the low."),
(7, write, "Try again.")),
st_ 7100)

(st 17_145, ((7, clear),
(4, write, "You moved the DETECTOR too far to the high."),
(7, write, "Try again.")),
stri_7_100)

/* End TASK RSR */

68

APPENDIX C

GRAMMAR

cfdgraph cfdgraph cfdnode I cfdnode I cfdmenu cfdnode
cfd_node "(" cfdjid "," actionlist "," response-list ")" I identifier ":=" string
cfdmenu "(.menu" string menulist ")"
menulist::= string "->" cfd-id "," menulist I string "->" cfdid
cfd_id ::= identifier
actionlist ::= "(" actnode_list ")" I actionnode
responselist "(" resnodelist ")" I responsenode
actionnode ::"(" region-id "," action ")"
actnodelist ::= actnodelist "," actionnode I actionnode
responsenode "(" pattern "," cfdid ")

I "(" pattern ", "(.assert "," identifier") .," cfdid")"
I '(' pattern ", ' ignore" ")"
I '(' pattern ", ''(" ''assert identifier ") , ''ignore)"
I "("assert "," identifier ")" "," cfd_id I cfd_id

resnodelist ::= resnode-list "," response-node
I response-node

regionid ::= integer I region-id "+" integer
action ::= "draw" "," identfier I "draw"," identifier "@" location I "clear"

I "clear "," identifier "@" location I "write" " " string I "input" "," input-list
I "pause" '' ,'integer I "drag,' identifier I "quit"

inputlist::= "mouse" I "keyboard" I "mouse&key"
location "(" loc.part "," loc-part ")"
loc-part loc-part "+" term I loc_part "-" term I term
term ::- term "*" factor I tern "" factor I factor
factor::= integer I "mouseX" I "mouseY" I identifier ".x" I identifier ".y" I "halfwid"

I "halfht" I "(" locpart ")"
patpart::- keywords I "click-left" I "click-right" I "click-middle" I "click-any"

I loc-part relop loc-part I "click-exit" I "click-help" I "click-continue"
I "mouse-move" I integer "seconds" I "past" cfd_id identifier I "(" pattern ")"

patconj patpart I patconj "&" patpart
pattern patconj I pattern "I" patconj
relop := "=" I ">" I "<" I '>=" I "<="
keywords ::= string

69

APPENDIX D

lex AND yacc FILES

A. parser.h - HEADER FILE

/* defines for cfd data structures and values */

/* region codes, or'd to make resultant code */
#define REGALL 0
#define REG_ONE 1
#define REGTWO 2
#define REG_THREE 4
#define REGFOUR 8
#define REGFIVE 16
#define REGSIX 32
#define REGSEVEN 64
#define REGEIGHT 128
#define REGNINE 256
#define REGOTHER 512

/* action codes */
#define ACT_NULL 0
#define ACTDRAW 1
#define ACT_CLEAR 2
#define ACTWRITE 3
#define ACTINPUT 4
#define ACTPAUSE 5
#define ACTQUIT 6
#define ACT_DRAG 7

/* input modes */
#define MODENULL 0
#define MODEMOUSEONLY I
#define MODEKEYONLY 2
#define MODEMOUSEKEY 3

70

/* response codes */
#define RESNULL 0
#define RESKEY I
#define RESCLICKLEFT 2
#define RESCLICKRIGHT 3
#define RESCLICKMID 4
#define RESCLICKANY 5
#define RESMOUSEX 6/* unused */
#define RESMOUSEY 7/* unused */
#define RESMOUSEMOVE 8
#define RESSECONDS 9
#define RESPAST 10
#define RESCLICKHELP 11
#define RESCLICKCONT 12
#define RESCLICKEXIT 13

/* operator codes */
#define OPNULL 0
#define OPGREAT I
#define OPGEQ 2
#define OPEQ 3
#define OPLEQ 4
#define OPLESS 5
#define OPAND 6
#define OPOR 7
#define OPKEYOR 8 /* unused */

struct expnode {
struct expnode *left, *right;
char op; /* only checked if left or right isn't null */
char *varname; /* mousex, mousey, or graph id */
char comp; /* x, y or blank */
int val; /* integer value in expression */

struct locnode
struct expnode *x, *y;
};

71

struct actnode
int actloc; /* region codes or'd together */
int action; * action code */
char *info-str; /* string arguments to action, including graph filename */
int info_int; /* integer arguments to action, including input mode */
struct locnode *infojloc; /* location arguments to action */
struct actnode *next; /* next action list */

struct opnode {
struct opnode *left; /* left arg to operator */
int operator; * operator code */
struct opnode *right; /* right arg to operator */
int resact; * response code */
struct expnode *res-left, *res-right; /* expression arguments to response */
int resint; /P integer argument to response, including seconds */
char *res str; /P string argument to response , includeing keywords */
1;

struct resnode
struct opnode *expr; * expression tree to match response */
char *label; /P assertion label */
struct cfdnode *node; / node to go to if match response, null to ignore */
struct resnode *next; / next response option */

struct cfdnode
char *nodeid;
struct actnode *actlist;
struct resnode *reslist;
struct cfdnode *next;

struct menunode
char *choice;
struct cfdnode *state;
struct menunode *next;

72

struct menu(
char *tte
struct menunode *choices;

#ifdef MAIN
#define EXTERN
#else
#define EXTERN extem
#endif

EXTERN struct cfdnode *cfdgraph;
EXTERN struct cfdnode *cfdlist;
EXTERN struct menu *topmenu;

struct picnode
char *picid;
char *picfile;
struct picnode, *next;

EXTERN struct picnode *piclist;

struct cfdnode *fnndO

73

B. parser.I - LEX

#include <stdio.h>
#include "y.tab.h"
int yylineno;
int yylen;
int intval;
static int is_comm =0;

char *ma11lyco;

II \t]+

\A* I is-somm =1;)
*V I(is-comm =0;
\+ [if (!is comm) {retum(TOKADD);))

(if (!is-comm) fretum(TOK SUBTRACT);))1
(if (!is_comni) Iretum(TOKTIMES);));

V (if (!is-cornm) treturn(TOK DIVIDE);))
@ ~(if (!i- *comm) Ireturn(TOK-AT);));

(if (!is_comm) (return(TOKBAR):))
(if (!is comrn) (return(TOK COMMA);1
(if (!is cornrn) fretum(TOK OPENPAREN)) I;
(if (!is-comm) (return(TOK-CLOSEPAREN):));
(if (!is comm) fretum(TOK-GREATEQ),)),
(if (!isscomm) {retum(TOK -LESSEQ):)).

-- (if (!is comm) fretum(TOK-EQUAL);));
\< (if (!is comm) (return(TOK-LESS);));
A> (if (!is_comm) (return(TOK-ARROW);)

(if (!is -cornm) {return(TOK DEFINE);fIlI
\> ~(if (!is-comm) { retum(TOK GREATER);1)

yylen = strlen(yytext);
yylval.t-str = malloc(yylen+ I);
strncpy(yylval.t-str,&(yytext[I]),yylen-2).
return(TOK-STR);)

74

[O-9]+ (if (!is-comm)
intval = 0;
yylen = strlen(yytext);
yylval.t-str = malloc(yylen+ 1);
strncpy(yylval.t-str,yytext,yylen);
while (is-comm, < yylen) I

intval = intval*l0 + yytext[is-commi - '0';
is-comm++;

is-Comm =0;
retum(TOKNUM);
I) ;

ignore (if (!is_comm) freturn(TOKJIGNORE);));
drag (if (!is-comm) (return(TOK-DRAG);));
draw I(if (! is_cornr) ({retum(TOK DRAW):)II)
clear (if (!is-comrn) {retum(TOK CLEAR);))
write (if (!is_comrn) (return(TOK-WRITE);j);
input (if (!is_comm) freturn(TOK INPUT),))I
pause (if (!is-omrn) freturn(TOKJ'AUSE);));
assert (if (!is comrn) freturn(TOK ASSERT);))
mouse (if (!is_comm) (return(TOK MOUSE):))
keyboard I(if(!is-comm) (return(TOK_KEY);)
mouse\&key (if (!is_comm) (return(TOKMOUSEKEY).))
click-left (if (!is comnm) {return(TOK_-CLICKLEFT);]);
click-right I if(!is_comm) (retum(TOKCLICKRTGHT);));
click-middle (if (!is_comni) Iretum(TOKCLICKMID);))
click-any (if(!is-comm) [return (TOKCLICKAN Y)-))
click-help (if (!is_comm) freturn(TOKCLICKHELP);));
click-continue (if (!is_comrn) {return(TOKCLICKCONT);))
click-exit (if (!is_cornm) (return(TOKCLICKEXIT).)I
halfwid (if (is Comnm) 1return(TOKHALFWID):))
halfht (if (!is comm) (return(TOKHALFHTJ;))
mouseX (if (!is_comim) Ireturn(TOK MOUSEX);))
mouseY (if(!is-comrn) freturn(TOK MOUSEY)))
mouse-move (if(!is_conim)(retum(TOI(_MOUSEMOVE);));
seconds (if (!is_comni) (retum(TOK SECONDS);))
past (if (!isscomm) I(return(TOKPAST); I -
menu (if (!is-comni) tretum(TOK MiENU)-.));
quit (if (!is_comni) (retum(TOKQU)

x (if (!is-conim) (return(TOK XCOMP).))
\.Y (if(!is-comni) (return(TOKYCOMP);))

75

[-9A-Za-z_-]+{if (!is_comm){
yylen = strlen(yytext);
yylval.tLstr = malloc(yylen+1);
strncpy(yylval.t-str,yytext,yylen);
retum(TOK ID);));

\& [{if (!iscomm) fretum(TOK_-AMPERSAND);))
(if (!is-Comm)

fprintf(stderr, "unrecognized '% s~n ",yytext);)

76

C. parser.y - YACC

%unionI
char *t-str;
int t-int;
struct cfdnode *t _cfd;
struct actnode *Lact;
struct resnode *tres;
struct opnode *top;
struct locnode *t-_bc;
struct expnode *t-exp;
struct menunode *tmen;

%token <t-int> TOKOPENPAREN TOKCLOSEPAREN
%token <t-ilt> TOK-EQUAL TOKGREATER TOKLESS TOKGREATEQ
TOK_ LES SEQ
%token <t-ilt> TOKADD TOKSUBTRACT TOKTIMES TOKDIVIDE
%token <t-ilt> TOKBAR TOKAMPERSAND
%token <t-int> TOKCOMMA TOKDEFINE TOKMENU TOKARROW
%token <t-int> TOKNUM
%token <t-int> TOKID
%token <t-int> TOKSTR
%token <t-int> TOKIGNORE
%token <t-ilt> TOKDRAW TOKWRITE TOKCLEAR TOKINPUT TOKPAUSE
TOKASSERT
%token <t -ilt> TOKDRAG TOK QUIT TOKMOUSEKEY TOKMOUSE
TOKKEY
%token <t-int> TOKCLICKLEFT TOKCLICKRIGHT TOKCLICKMID
TOKCLICKANY
%token <t-int> TOKCLICKHELP TOKCLICKCONT TOKCLICKEXIT
%token <t_ilt> TOK_MOUSEX TOKMOUSEY TOK_MOUSEMOVE TOK-PAST
%token <t-int> TOKSECONDS TOKHALFWID TOKHALFHT
%token <t-int> TOKXCOMP TOKYCOMP TOKAT
%type <t-str> cfd-id

%type <-men> menu-list
%type <tLmen> chojce
%type <t-act> action-list
%type <t-act> action-node
%type <- act> act -ilode-list
%type <t-res> response-list
%type <tLres> response-node
%type <t-str> exp-assent
%type <t-res> res-node-list

77

%type <tLint> region-id
%type <L-act> action
%type <t-int> input-list
%type <Lop> keywords
%type <L~op> pattern
%type <L~op> patpart
%type <L-op> patconj
%type <L-int> relop
%type <tLoc> location
%type <L-exp> locpart
%type <L-exp> term
%type <L-exp> factor

%start cfd-graph

cfd-graph :cfd-graph cfd node I cfdgrp fdef I

start cfd-node I start cfd-def I
start cfd-menu cfd-node I start cfd-menu cfd-def;

start: (
cfdlist = NULL;
cfdgraph = NULL;
piclist = NULL;
topmenu = NULL;

#ifdef YYDEBUG
#if YYDEBUG
yydebug = 1;
#else
yydebug =0;
#endif
#endif

cfd-menu: TOKOPENPAREN TOKMENU TOKSTR
(topmenu = NEWPTR(menu);
topmenu->title = yylvalt-str;
) menu-list TOKCLOSEPAREN
(topmen u->choices = $5;)

78

menu-list: choice TOKCOMMA menu-list
(tmp__nenu = $1;

tmp-menu->next = $3;
$$ = tmp-menu;
I choice ($$ =$ 1;

choice: TOKSTR I tmp-str = yylval.t-str; I TOKARROW cfd-id
{tmp-menu = NEWPTR(menunode);

tmp-menu->choice = tmpstr;
tmnp_menu->state = findnode($4);

tmp-menu->next = NULL;
$$ = tmpmenu;

cfd-node : TOK_ OPENPAREN cfd-id TOKCOMMA action-list TOKCOMMA
response-list TOKCLOSEPAREN

(trnp-node = findnode($2);
tmp-node->actlist = $4.
tinpnode->reslist = $6;
if (cfdgraph == NULL) cfdgraph = tmp-node;
/* else it's already linked into the graph *
j ;

cfd-def:- TOKID3 (tmp-str =yylval.tstr;) TOKDEFINE TOKSTR

I adddefn(tmip-.str,yylval.t-str): I

cfd id : TOK ID {$$ = my-copy(yylval.t-str,yylen);

actionjlist : TOK_OPENPAREN act-nodejlist TOKCLOSEPAREN ($$ -$2;)

1 action node ($$ = $1)

response-list : TOK_OPENPAREN res-node-list TOKCLOSEPAREN ($$ =$2;)

1response-node ($$ =$l1j

action-node : TOKOPENPAREN region-id TOKCOMMA action
TOKCLOSEPAREN

(tmpact =$4;

tnip-act->actloc = $2;
tmp...act->next = NULL;
$$ = tnip-act:

79

act-nodejist: act-nodejlist TO)K_COMMA action-node
(tmp-act = $1;
if (tmpact == NULL) $$ = $3;
else I

while (tmp-act->next != NULL) tmpact=tnp-act->next;
tmp-act->next = $3;
$$ =$1;

I action-node ($$ = $1;)

response..yode : TOKFOPENPAREN pattern TOKCOMMA cfd-id
TOKCLOSEPAREN

(tmpryes = NEWPTR(resnode);
tmpjes->label = NULL;

tmpjes->expr =$2;
tmpjes->node =findnode($4);
$$ = tmp-res;

I TOKOPENPAREN pattern TOKCOMMA exp..assent
TOKCOMMA cfd-id

TOKCLOSEPAREN
{tmnpjes = NEWPTR(resnode);.

tmp-res->Iabel = $4,
tmpres->expr =$2;
tmpjes->node =findnode($6).
$$ = trnpjes;

I TOKOPENPAREN pattern TOKCOMMA exp-assent
TOKCOMMA TOKIGNORE

TOKCLOSEPAREN
{tmpres = NEWPTR(resnode);

tmpjes->label = $4;
tmpjes->expr =$2;
tmpjes->node =NULL:
$$ = tmp-res;

I TOKOPENPAREN pattern TOKCOMMA TOKIGNORE
TOKCLOSEPAREN

{tmpj es = NEWPTR(resnode);
tmnp-es->label = NULL;

tmnpres->expr =$2;
tmp-es->node =NULL;

8()

$$ = tmp-res;

I expassent TOK_COMMA cfd-id
(tmpjyes = NEWPTR(resnode);
tmp-yes->expr = NULL;

tmpjes->label = $1;
tmpjes->next = NULL;
tmnpjes->node = findnode($3);
$$ = tmpjres;

I cfd-id
(tmpjes = NEWPTR(resnode);
tmnp-jes->expr = NULL;

umpjes->abel = NULL;
tmnpjes->next = NULL;
tmp-es->node = findnode($ 1);
$$ = tmpjres;

exp-assert: TOKOPENPAREN TOKASSERT TOKCOMMA TOKID
I tmp-str = my-copy(yylval.t-str,yylen);) TOK_CLOSEPAREN
{ $$ = tmp-str;);

res-node-list: res-node-list TOKCOMMA response-node
(tmnpjes $ $1:

$$ =NULL;
if (tmpjres == NULL) $$ = $3.
else

while (trnp_res- >next !- NULL) tmp-res =tnip-es->next;

tmp..yes->next = $3;
$$=$1

I respon sejiode ($$=$1;}

region.id: TOK_NUM
I switch (intval) {
case 0 : $$ = REGALL; break;
case I : $$ = REG-ONE; break;
case 2 : $$ = REGTWO; break;
case 3: $$ = REGTHREE; break;
case 4: $$ = REGFOUR; break;
case 5 : $$ = REGFIVE; break;
case 6 : $$ = REGSIX; break;
case 7 : $$ = REGSEVEN; break;
case 8 : $$ = REGEIGHT; break;
case 9: $$ = REG-NINE; break;
default: $$ = REGOTHER;
I
I
I region-id TOKADD TOKNUM
(switch (intval) {

case 0 : $$ = $1I REG-ALL; break;
case 1: $$ = $1I REG-ONE; break;
case 2 : $$ = $1 I REGTWO; break;
case 3 : $$ = $11 REGTHREE; break:
case 4 : $$ = $11 REG-FOUR; break;
case 5 : $$ = $11 REG-FIVE; break,
case 6 : $$ = $11 REG-SIX; break;
case 7 : $$ = $1 1 REGSEVEN; break:
case 8 : $$ = $1 1 REGEIGHT; break;
case 9 : $$ = $1 1 REG-NINE; break:
default: $$ = $11 REG_OTHER;

I;

82

action: TOKDRAW TOKCOMMA TOKID
tif ((t...pic=findpic(yylval.t.str))! =NULL)
$$ =new-actnode(ACTDRAW, t-pic->picfile, 0, NULL);

else
fprintf(stderr,"Warning: undefined graph %s\.n" ,yylval.t..str);
$$ = new-actnode(ACTDRAW, yylval.t-str, 0, NULL);

I TOKDRAW TOKCOMMA TOKJID (tnp-str = yylval.t-str; ITOKAT location
(if ((tpic = findpic(tmpstr))! =NULL)
$$ = new..actnode(ACTDRAW, t-pic->picfile, 0, $6);

else I
fprintf(stderr,"Warning: undefined graph %s\n",tmp-str);
$$ = new-actnode(ACTDRAW, tmp-str, 0, $6);

I TOK_-DRAG TOKCOMMA TOK_ID
(if ((tpic = findpic(yylval.t-str)) ! =NULL)

$$ =new-actnode(ACTDRAG, t-pic->picfile, 0, NULL),
else
fprintf(stderr,"Warning: undefined graph %s\n",yylva.t-str);
$$ = new-actnode(ACTDRAG, yylval.t-str, 0, NULL);

I TOKCLEAR
I$= new-actnode(ACTCLEAR,NULL, 0, NULL):)

TOK-QUIT
$$= new-actnode(ACT-QUIT,NULL, 0, NULL);:)

I TOKCLEAR TOKCOMMA TOKJID I(trnp-str = yylval.t-str;)
TOKAT location

(if ((t..pic = findpic(tmp..str))! =NULL)
$$ =new-actiode(ACTCLEAR, t-pic->picfile, 0, $6);

else{
fprintf(stder-r,"Warning: undefined graph %s"'n",tmp-str),
$$ = new-actnode(ACTCLEAR, trnipstr, 0, $6);

I TOKWRITE TOKCOMMA TOKSTR
j $= new-actnode(ACT_-WRITE,yylval.t-str,O,NULL),)

I TOKINPUT TOKCOMMA input-list
$$= new...actnode(ACTINPUT,NULL,$2,NULL);J

I TOKPAUSE TOKCOMMA TOKNUM
=new-actnode(ACTPAUSE,NULL, intval, NULL)

83

location: TOKOPENPAREN Iocpart TOK..COMMA Iompart TOKCLOSEPAREN
(tnp-loc = NEWPTR(locnode);
tmpjloc->x = $2;
tmp-loc->y = $4;
$$ = tmpjoc;

locpart term ($$=$1;)
I Iompart TOKADD term
I tmpsexp = NEWPTR(expnode);
tmp-exp->left = $1;
tmp-exp->op =';

ump-exp->right = $3;
tmp-exp->vamame = NULL;
tmp-exp->comp = ';
tmp-exp->val = 0;

$$ =tmp-exp;)

I Imcpart TOKSUBTRACT term
I tmp-exp = NEWPTR(expnode);
tmp-exp->left $ $1;
tmp-exp->op =''
tmp-exp->right = $3;
tmp-exp->vamame = NULL;
tmp-exp->comp = '';
tmp-exp->val = 0;

$$ = tmp-exp;}

term: factor I$$ = $1;)
I term TOKTIMES factor

{tmp-exp = NEWPTR(expnode);
tmp...exp->left = $1;
tmp-exp->op -''

tmp-exp->right = $3;
tmp-exp->varname = NULL;
tmp-exp->comp = '';
tmp...exp->val =0;
$$ = tmp-exp;)

I term TOKDIVIDE factor
I tmpsexp = NEWPTR(expriode);
tmp...exp->left = $1;
tmp-exp->op =7'I;
tmp-exp->right = $3;
tmp-exp->vamanie = NULL;

84

tmpexp->comp = '
tmpexp->val =0;
$$ = tmp--exp; 1

factor: TOKNUM
{tmp-exp = NEWPTR(expnode);
tmp-exp-Aeft = NULL;
tmp-exp->op ='';
tmnps-xp->right = NULL;
tmps-xp->vamame = NULL;
tmp-.exp->comp = '';

tmp-exp->val =intval;

$$ = tmnpexp;)
I TOKHALF WID

Itmp__xp = NEWPTR(expnode);
tmp-exp->left = NULL;
tmp-exp->op= ;
tmp-exp->right = NULL;
tmp-exp->vamarne = "halfwid";
tmnpexp->comp = ';
tmpsexp->val =0;
$$ = tmp..exp;

I TOKHALFHT
{tmps- xp = NEWPTR(expnode);
tmp-exp->1eft = NULL;
tmp-exp->op ='';

tmp-exp->right = NULL;
tmp-exp->vamame = "halfht";
tmp-exp->comp = '';

tmpsexp->val =0;

$$ = tmp-exp;
I TOKMOUSEX

Itmp-exp = NEWPTR(expnode);
tmp-exp->left = NULL:
tmp-exp->op=
tmnp-xp->right =NULL;

tmp-exp->vamame = 'mouseX';
tmp-.exp->comp = '';

tmnp-xp->val =0;
$$ = tmpexp;

I TOKMOUSEY
(tmp..exp = NEWPTR(expnode):.
tmp-exp->Ieft = NULL:

8 5

hnp-exp->op-
tmp-exp->right =NULL;

tmp...exp->vamame = "mouseY';
tmp-exp->comp =';
tmp-exp->val =0;
$$ = tmp-exp;

I TOKID TOKXCOMP
ftmp-exp = NEWPTR(expnode);
tmp-exp->left = NULL;
tmnp-exp->op =-'
tmp-exp->right = NULL;
tmnp-exp->vamname = yylval.t-str;
tmp-exp->comp=,;
tmp-exp->val =0;
$$ = tmp-exp;

I TOKID TOKYCOMP
(tmp-exp = NEWPTR(expnode);
tmp-exp->left = NULL;
tmp-exp->op =-'
tmnp-xp->right = NULL;
tmp-exp->vamame = yylval.tLstr:
tmnp- xp->comnp = ''
tmnps-xp->val =0:
$$ =tmpsexp;

I TOKOPENPAREN Imcpart TOKCLOSEPAREN {$=$2;);

input-list: TOKMOUSE [$$ = MODEMOUSEONLY;)
I TOK-(EY ($$ = MODEKEYONLY;})
I TOKMOUSEKEY j$$ = MODEMOUSEKEY;)

patpart :keywords I $$ = $1;)
1 TOKCLICKLEFT

($= new_opnode(OPNULL,NULL,NULL,NULL,NULL,
RESCLICKLEFT,0,NULL);)

I TOKCLICKRIGI-T
$$= new-opnode(0P.NULL,NULL,NULL,NULL,NULL,

RESCLICKRIGHT,0,NULL); I
I TOKCLICKMID

$$= new-opnode(OPUNULL,NULL,NULL,NULL,NULL,
RESCLICKMID,O,NULL);)

I TOKCLICKANY
$$= new-opnode(OP-NULL,NULL,NULL,NULL,NULL,

RESCLICKANY,O,NULL); I

86

I TOKCLICKHELP
I $$ = new-opnode(OP-NULL,NULL,NULL,NULL,NULL,

RESCLICKCONT,O,NULL);)
I TOKCLICKCONT

$$= new-opnode(OP_-NULLNULL,NULL,NULL,NULL,
RESCLICKCONT,O,NULL);)

I TOKCLICKEXIT
($$ = newopnode(OP-NULL,NULL,NULL,NULL,NULL,

RESCLICKEXIT,O,NULL);
I locpart relop Imcpart

$$= new-opnode($2,NULL,NULL,$ 1,$3,
RESNULL,O,NULL);)

I TOKMOUSEMOVE
{ $$ = new-opnode(OPUNULL,NULL,NULL,NULL,NULL,

RESMOUSEMOVE,O,NULL);.
I TOKNUM TOKSECONDS

I$= new_opnode(OPNULL,NULL,NULL,NULL,NULL.
RESSECONDS,intval,NULL);)

I TOKPAST cfd-id TOKID

tmp-str = malloc(strlen($2)+yylen+2);
strcpy(tmp-.str,$2);
strcat(tmp~str,"/"),

stcttnpsr =vl~-t)

new-opnode(OPNULL,NULL,NULL,NULL,NULL,RESPAST,O,tmp-str);J
I TOKOPENPAREN pattern TOKCLOSEPAREN

1$ $2;)

patconj :patpart ($$ =$1;)

1 patconj TOKAMPERSAND patpart

new-opnode(OP-AND,$ 1,$3,N ULL,NULL,RESNULL,O,N ULL);

pattern :patconj [$$ = $1;) 1 pattern TOKBAR patconj
I$$ = new-opnode(0P-.OR.$ I,$3,NULL,NULL,RESNULL,O,NULL);

relop : TOK-EQUAL J $$ = OP? EQ;)
I TOKGREATER ($$ = OPGREAT;)

I TOK-LES S ($$ = OP LESS;)
I TOKGREATEQ ($$ = OP? GEQ;)
I TOKLESSEQ {$$ = OP-LEQ;);

keywords: TOKSTR
1$=

new-opnode(OP-NULL,NULL,NULL,NULL,NULLRESKEY,O,yylval.t-str);)

#include <stdio.h>
#ifdef STANDALONE
#define MAIN
#include "parser.h"
4tundef MAIN
#else
#include "parser.h"
#endif

extern int yylineno;
extern char *yytext;
extern int yylen;
extern int intval;
char *mallocO;
char *tmp-str;
struct expnode *tmp-exp;
struct opnode *tmp-op;
struct resnode *tmp-res;
struct cfdnode *tmp-node;
struct actnode *tmp-act;
struct locnode *tmp-lo;
struct menunode *tmp-menu;
struct picnode *t-pic;

#define NEWPTR(Type) (struct Type *)malloc(sizeof (struct Type))

88

char *my-copy(stlen)
char *str;
int len;
(char *tmp;
if (str == NULL 11 len <= 0)

fprintf(stderr,"null string sent to my-opy\n");
return NULL;

else
if ((tmp = malloc(len+ 1)) == NULL){
fprintf(stderr,' Cannot allocate memory for string of length %d\n",len+l);
exit(2);

stmcpy(tmp, str,Ien);
#if YYDEBUG

fprintf(stdout,"copied % s (%d)'.n ,tmp,len);
#endif

return tmp;

struct opnode *new-opnode(op,oleft,oright,rleft,rright,act,nu-,str)
struct opnode *oleft, *oright;
mnt op,num,act;
struct expnode *rleft, *Irlght;
char *str;
Istruct opnode *tmp = NEWPTR(opnode);
tmp->left = oleft;
tmp->operator = op;
tmp->right = oright;
tmp->res.-act =act;

tmp->res_left =rieft;

tmp->res-ight = rright;
tmp->res,_it = num;
tmp->res...str = str;
return tmp;

89

struct actnode *new actnode(actcode, str, num, loc)
int actcode, num;
char *str;
struct locnode *l()c;
(struct actnode *tm = NEWPTR(actnode);
trnp->actloc = 0; /P whole screen, by default *
tmp->action = actcode;
tmp->info -str = sir;
tmp->info_mnt = num;
tmp->info-oc: = loc;
tmp->next =NULL;
return tmp;

struct cfdnode *findnode(target)
char *target;
(struct cfdnode *cur = cfdlist;
if (cur == NULL) {

cfdlist = NEWPTR(cfdnode);
cfdlist->nodeid = target;
cfdlist->actlist = NULL;
cfdlist->reslist = NULL;
cfdlist->next = NULL;
return cfdlist;

else
if (target == NULL) return cfdlist:
while (cur->next != NULL && strcmp(cur->nodeidjtarge0I=O) cur =cur->next.

if (strcmp(cur->nodeid,target)==0) return cur:
else (

cur->next = NEWPTR(cfdnode):
cur = cur->next;
cur->nodeid = target;
cur->actlist = NULL;
cur->reslist = NULL;
cur->next = NULL,
return cur;

return NULL; /P should be unreachable, but let's be safe! *

90)

struct picnode, *findpic(target)
char *target;
{ struct picnode *curji = piclist;
if (cur == NULL 11 target == NULL) return NULL;
while (cur->next != NULL && strcmp(cur->picid,target) !=0) cur =cur->next;

if (strcmp(cur->picid,target) == 0) return cur;
else return NULL;

void add-defn(id,filename)
char *id, *filename;
(struct picnode *cur = piclist;
if (id == NULL 11 filename == NULL)

fprintf(stderr,"Warning: null ident/filename in def on line %d\n',yylineno);
return;

if (cur == NULL)
piclist = NEWPTR(picnode);
piclist->picid = id;
piclist->picfile = filename;
piclist->next =NULL;
I

else{
while (cur->next != NULL && strcmp(cur->picid,id) =0) cur =cur->nexV.

if (strcmp(cur->picid,id) ==0)1
fprintf(stderr,"Warning: ignoring duplicate picture namned %s on line %d~n",

id,yylineno):

else
cur->next = NEWPTR(picnode):
cur = cur->next;
cur->picid = id;
cur->picfile = filename;
cur->next = NULL;

91

int yyerror(s)
char *s;

{fuhsdu)
fflush(stdout);

fprintf(stderr,"%s on line %d\n",s, yylineno);

#ifdef STANDALONE
main()

if (yyparseo==-O) printf(" Successful parse\n");
else printf("Unsucessful parse\n');

#endif

92

APPENDIX E

INTERPRETER

/* FILENAME: interp.h *1
/* PURPOSE: Declaration of all global variables, function */
/* declarations and include files */
/* CALLED BY: interp.c */

/* AUTHOR: Dawn M. Maskell */
/* Timothy J. Shimeall */
/* Naval Postgraduate School, Monterey, CA */
/* DATE: 20 January 1991 */

/* include files *1

#include <stdio.h>

#include <string.h>

#include "parser.h"

#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <suntool/icon.h>
#include <suntool/panel.h>
#include <suntool/alert.h>
#include <sunwindow/notify.h>
#include <sys/time.h>

93

#ifdef MAIN
#define EXTERN
#define INIT(Value) = Value
#else
#define EXTERN extern
#define INIT(Value)
#endif

#define ITIMER NULL ((struct itimerval *)O)

P~ set up conversion macros */

#define LINETORASThR-Y(Line) Line* 16
#define RASTERY_TO_LINE(Ry) Ry/16
#define CHARTORASTER X(Char) Char*8
#define RASTERX_TO_CHAR(Rx) Rx/8

1* STRUCTURE declarations *

struct assert(/* for assert list *
char *id; /* state identifier being asserted *
struct assert *next; /* ptr to next in assert list *

94

/* GLOBAL variables */

EXTERN struct assert *assert-list INIT(NULL); /* create assert list */

EXTERN struct cfdnode *current-state INIT(NULL);/* pointer to current*/
/P state in tutorial */
/* being executed */

EXTERN Canvas canvas; /* base canvas for display of */

/* graphics and text */

EXTERN FILE *yyin; /* yacc input file, default stdin */

EXTERN Frame frame; /* base window of system */

EXTERN Icon post icon;

EXTERN int panel-value; /* value of start state selection */
timer on; /* need to use a time */

EXTERN Panel menu-panel, /* display main menu buttons */
panel; /* display base window panel buttons */

EXTERN Panelitem button, /* base window panel */
cont, /* base window panel item button */
help, /* base window panel item button */
menu, /* base window main menu check boxes */
quit; /* base window panel item button */

#ifdef MAIN
/* ICON declarations */
static short icon-image(1 =
#include "post-sym.icon"

EXTERN mpr-static(post-sym, 64. 64, 1, icon-image);
#endif

95

/* FUNCTION declarations *

EXTERN struct assert

*create_assert_listo;

EXTERN char
*menu_selectiono;

EXTERN void
canvasjepainto,
create-base-canvasO,
create- base-framneO,
create-base..panelO,
doactioniisto,
exit-selectedO,
killwindowO,
get-fileo,
panel-repainto,
pauseo,
input-eventso,
present -concepto;

EXTERN mnt
continue-selectedo,
find-assert-list-ido,
help-selectedo,
do~responsejlisto,
start-selectedO;

EXTERN Notify-value
pause-imeo,
mynotifyo;

96

1* FILENAME: interp.c *
/* PURPOSE: contains the routines to interpret concept-flow *
/* structure of the Physics of Sound Tutorial *
/* CONTAINS: main()*
/* get-file() */
/* create-base-frameO *
I* create_base_panel() *
/* createjbase-canvasO *
/* AUTHORS: Dawn M. Maskell, LT, USN *
/* Timothy J. Shimeall */
/* Naval Postgraduate School, Monterey, CA *
/* DATE: 21 January 1992 *
/* SOFTFWARE: SunView *

#define MAIN

#include "interp.h"

main(argc, argv)
int argc;
char *argv[];

/* get the correct input file for tuturial ~
getj'ile(&argc, argv);

/* Successful parse of file, execute tutorial ~
if (yypirse() == 0)
I
/* create base frame *
create-base_frame(argc, argv);

/* create base panel */
create-base-panel();

/* create base canvas ~
create-base-canvaso;

window-nmainjloop(frame);

/* Unsuccessful parse *
else printf("U n successful parse !\n")-.

97

98

/* FUNCTION: getfileO "1
/* PURPOSE: get the name of the file to be used for tutorial */
/* CALLED BY: main() */
/* RETURNS: void */
/* CALLS: */
/* GLOBALS: FILE yyin <interp.h> */

void getjfile(argc, argv)
int *argc;
char *argv[],
tint i;
/* get name of tutorial file from stdin */
if (*argc>l && *argv[1] != ')

yyin = fopen(argv[1],"r");
if (yyin == NULL) I
fprintf(stderr,"%s: Can't open %s\n",argv[0.argv I]);
exit(l);
I
for (i=l; i < (*argc - 1); i++)
argv[i] = argv[i+]:
(*argc)--;

I
/* if name of tutorial file not given, assume
else
yyin = fopen("post.script"."r");
if (yyin == NULL) {
fprintf(stderr,"%s: Can't open post. script\n",argvj 0]):
exit(l);

9
I
I

99

1* FUNCTION: create -base-frz:ne()*
/* PURPOSE: create the main window that the entire tutorial *
1* operates */
/* CALLED BY: main()*
/* RETURNS: void *
/* CALLS: */
/* GLOBALS: Frame frame <interp.h> *

void create -basej'rame(argc, argv)
int argc;
char *argv[];

1* create icon image *
post-icon = icon-create(ICONIMAGE, &post-sym, 0):

frame = (Frame)window-create(N ULL, FRA ME.
FRAMELABEL, ((topmenu !- NULL) ? topmenu-xte

"Physics of Sound Tutorial").
FRAMEICON, posticon,
FRAMEARGS, argc, argv.
FRAMENOCONFIRM. FALSE.
NULL);

1001

/* FUNCTION: create base panel() *
/* PURPOSE: create the buttons for the main window of the ~
/* tutorial *
/* CALLED BY: maino *
/* RETURNS: void *
/* CALLS: continue-selected *

/* exit-selected *

/* help-selected *
/* start-selected *
/* GLOBALS: Frame frame <interp.h> ~
/* Panel menu-panel, panel <interp.h> ~

void create-base-panel()
I
panel = (Panel)windowscreate (framie, PANEL,
WINWIDTH, WIN-EXTENDTOEDGE,
NULL):

menu = (Panel-item)panel create-item(panel, PANELBUTTON,
PANELLABELIMAGE, panel-button-imiage(panel, "START", 5, 0),
PANELNOTIFYPROC. start-selected,
NULL);

help = (Panelitem)panel create-itemi(panel, PANELBUTTON,
PANELLABELIMAGE, pane Ibu tton- image (panel, "HELP-, 4. 0),
PANELNOTIFYPROC. help-selected,
NULL);

cont = (Panelitem)panel create-item(panel, PANEL BUTTON,
PANELLABELIMAGE, panel-button-iniage(paniel, "CONTINUE",
8,0),
PANELNOTIFYPROC. continue-selected,
NULL);

quit = (Panel~item)panel-create-iremi(panel, PANELBUTTrON,
PANELITEM-X, 590,
PANELLABELIMAGE, panel-button-image (panel, "EXIT", 4, 0).
PANELNOTIFYPROC. exit-selected.
NULL);

window-fit-height(panel):

I 0)

102

/* FUNCTION: create-base_canvaso)*
/* PURPOSE: create the base canvas for the main window of the *
/* tutorial */
/* CALLED BY: mainO *
/* RETURNS: void */
/* CALLS: canvasjepaint *
1* GLOBALS: Frame frame <interp.h> *
/* Canvas canvas <interp.h> *

void create_base_canvasO
{Pixwin *pw;
/* create a canvas on which to display the tutorial ~
canvas = (Canvas) window create(frarne, CANVAS,
WIN-X, 10,
WINCOLUMNS, 60,
WIN-ROWS, 45,
CANVASAUTO_-EXPAND, TRUE,
CANVASAUTOSHRINK, TRUE,

/* CANVASREPAINT-PROC. canvas-repaint, ~
NULL);

printfC'Width of 60 chars is %d, Height of 45 lines is %d\n",
(int) windowget(canvas,WIN-WIDTH).
(int)window-get(canvas, WI NHEIG HT)):

pw = canvas-pixwin(canvas):
window-set(canvas,
WINCONSUMEKBDEVENTS, WINNOEVENTS, WINASCIIEVENTS,

0,
WINCONSUMEPICKEVENTS. WINMOUSEBUTTFONS,
WININTRANSITEVENTS, 0,
NULL);
winjegister(canvas, pw, input-events, kill-window, PWRETAIN)-
notify-interpose-event_func(canvas, my-notify, NOTIFYSAFE);

1 03

/* FUNCTION: startselected0 */
/* PURPOSE: provide on-line help to user */
/* CALLED BY: createbaseframeO */
/* RETURNS: int /
/* CALLS: */
/* GLOBALS: */

int startselected(item, event)
Panelitem item;
Event *event;
I
char *startstate;

Alertattribute *attrlist = (Alertattribute *)malloc
(10*sizeof(Alertattribute))

/* load attrlist from topmenu */
panelvalue = alert-prompt(panel, NULL,
ALERTMESSAGESTRINGS, "Select starting point-,
NULL,
ALERTBUTTON, "Introduction', 0,
ALERTBUTITON, "Source", 1,
ALERTBUTTON, "Sound", 2,
ALERTBUTTON, "Detector", 3,
ALERTBUTTON, "Mastery' Test", 4,
NULL);

/* 0, 1, 2, 3 and 4 are value returned when button is pushed */

I* get main menu item selected and start point of tutuorial */
start_state = menuselectiono:

/* find start state in cfdgraph */
currentstate = findnode(start-state);

/* do actions in start state action list */
doactionjlist(current_state->actlist);

/* get event and find in response list
doresponsejlist(current-state->reslist);
*1

1 04

1* return to main ~

105

1* FUNCTION: help-selected0 */
/* PURPOSE: provide on-line help to user */
/* CALLED BY: createbase_frameO */
/* RETURNS: int *
/* CALLS: */
/* GLOBALS: */

int help-selected(item, event)
Panelitem item;
Event *event;
I
int result;

result = alert-prompt(panel, NULL,
ALERTMESSAGESTRINGS, "Help button selected", NULL,
ALERTBUTTONYES, "OK",
ALERTBUTTONNO, "CANCEL",
NULL);

if (result == ALERTYES)
return 1;
else return 0;

106

/* FUNCTION: continue.selected0 */
/* PURPOSE: provide on-line help to user */
/* CALLED BY: createbaseframe) */
/* RETURNS: int *

/* CALLS: */
/* GLOBALS: *1

int continueselected(item, event)
Panelitem item;
Event *event;
{
int result;

result = alertprompt(panel, NULL,
ALERTMESSAGESTRINGS, "Do you wish to continue?", NULL,
ALERTBUTYONYES, "YES",
ALERTBUTIONNO, "NO".
NULL);

if (result == ALERTYES)
return 1;
else return 0:

1

107

/* FUNCTION: exit-selected0 */
/* PURPOSE: provide on-line help to user */
/* CALLED BY: create-baseframeO */
/* RETURNS: int /
/* CALLS: */
/* GLOBALS: */

void killwindow(frame, event, args)
Window frame;
Event *event;
char *args;

I
/* this can't call window..destroy (for fear of recursive loop) */
/* but eventually needs to do almost everything else to clean up */
exit(O);
I

void exit-selected(argc, argv)
int *argc;
char *argv[1;
{
window destroy(frame);
kill-window(frame, NULL, NULL):

1

/* FUNCTION: menu-seclectionO *
/* PURPOSE: call procedure based on main menu option selected *
/* CALLED BY: create-base-.panel() *
/* RETURNS: void *

/* CALLS: */
/* GLOBALS: Panel menu-panel <interp.h> ~

char *menu-selection()

/* based on the main menu option chosen, find the start state ~
/* of the tutorial */
switch (panelvalue) {
case 0:{1
printf("INTRODUCTION chosen\n");,
printf("Go to start state: %s\n", cfdgraph->nodeid);
return (cfdgraph- >node id)
break;
I
case 1:1
pi-intf("SOURCE chosen\n"):
return ("st_2);
break;

case 2:1
printf("MEDIUM chosen\ni");-
break;

case 3:1
printf("DETECTOR chosen\n'):
break;

case 4:{
printf("MT chosen~n");
break;

)/* End switch *

109

#include "interp.h"
#include <suntool/icon-load.h>

static int is.pausing = 0;
static int mousex = 0;
static int mousey = 0;
static char inbuf[2048];
static int inbuflen = 0;
static int inx = 0;
static int iny = 0;

/* FUNCTION: canvasrepaintO */
/* PURPOSE: repaint canvas window */
/* CALLED BY: main() <interp.c> */
/* RETURNS: void */
/* CALLS: */
/* GLOBALS: Canvas canvas <interp.h> */

void canvasrepaint(cvs, pwin, xrects)
Canvas cvs;
Pixwin *pwin;
int xrects; /* unused */

I
Pixwin *pw = canvas-pixwin(canvas):

/* EVENTUALLY - BUILD A REPAINT LIST IN DO ACTION LIST */
/* EVENTUALLY - decode event */
/* EVENTUALLY - interpret which state to go to based on event */
/* EVENTUALLY - do actions in that next state *1
/* EVENTUALLY - return to main */
I

I10 (

1* FUNCTION: dowrite(*/
/* PURPOSE: display text in canvas window */
/* CALLED BY: doactionjlist(*/
/* RETURNS: void */
/* CALLS: */
/* GLOBALS: Canvas canvas <interp.h> */

void do write(dx, dy, dw, dh, str)
int dx, /* x coordinate of pixwin origin */
dy, /* y coordinate of pixwin origin */
dw, /* width of pixwin */
dh; /* height of pixwin */

char *str; /* string to be printed in pixwin */
I
char *cur;
int pos;
char save;
Pixwin *pw = canvaspixwin(canvas):

printf("Write\n");

/* clear the pixwin prior to writing */
pw-writebackground(pw, dx - CHARTORASTERX(1),
dy - LINETORASTERY(J),
dw + CHARTORASTERX(1), dh, PIXSRC):

/* write string in pixwin */
cur = str;
/* EVENTUALLY -- Deal with scrolling windows */
while (*cur != 'W0') I
if (strlen(cur)> RASTER_X_TO_CHAR(dw)) I
/* output up to word break prior to dw and adjust cur accordingly*/
pos = RASTERXTOCHAR(dw);
while (pos>O && curlposl!=' ')
pos--;
if (cur[posj!-' ')
pos = RASTERXTOCHAR(dw); /* no blank to break at */
save = curlpos];
cur[pos] = '\O'; /* cheat */
pw-text(pw, dx, dy, PIXSRC, NULL, cur);
cur[pos] = save: /* uncheat */

111

cur =cur + pos;
while (*ur == ' '
cur++; 1* skip whitespace after linebreak ~
dy +e= LINETORASTER-Y(l);

else I /* print cur *
pwjtext(pw, dx, dy, PIX-SRC, NULL, cur);
break;

P / End while *

112

/* FUNCTION: my-notify0 */
/* PURPOSE: track mouse and handle other needed events */
/* CALLED BY: */
/* RETURNS: integer */
/* CALLS: */
/* GLOBALS: Canvas canvas <interp.h> */

Notify-value my-notify(frame, event, arg, type)
Frame frame;
Event *event;
Notify-arg arg;
Notify-eventtype type;
{ int id = event id(event);
Notify-value value;
if (id >= ASCIIFIRST && id <= ASCIILAST)
(if (id >= ' ' && id <= '-') I
inbuf[inbuflen++] = (char) id;
inbuflinbuflen]=''; /* simulate cursor */
)
else if (id == '\b' l1 id == ASCIILAST /* DEL */)
inbuf[inbuflen] = 'W;
if (inbuflen>O) inbuf[--inbuflenl =

I
else if (id == '\024' /* CTRL-U */)
while (inbuflen>O) inbuftinbuflen--] = 4':
inbuflinbuflen] = '"

else if (id == '\r') inbuf[inbufleni = '\0"
I
else
switch (id)
case LOCSTILL: /* fall through */
case LOC_WINENTER: /* fall through */
case LOCWINEXIT: /* fall through */
case LOCDRAG: /* fall through */
case LOCTRAJECTORY: /* fall through */
case LOCRGNENTER: /* fall through */
case LOCRGNEXIT: /* fall through */
case MSLEFT: /* fall through */
case MSRIGHT: /* fall through */
case MSMIDDLE: /* fall through */
case LOCMOVE:

t13

mousex = event-x(event);
mousey = event-y(event);
break;
default: break;

value = notify-next-event-func(frame,event,arg,type); /* let window handle *
return value;

114

1* FUNCTION: doexpr(*/
/* PURPOSE: evaluate expression structure and return value */
/* CALLED BY: dolocation(*/
/* RETURNS: integer */
/* CALLS: (recursive) */
* GLOBALS: Canvas canvas <interp.h> int mousex, mousey */

int dosexpr(exptr)
struct expnode *exptr;
Iint lhs, rhs;
if (exptr == NULL) return 0;
if (exptr->left == NULL && exptr->right == NULL)
if (exptr->varname != NULL) I
if (strcmp(exptr->varname, "halfwid") == 0)
return (int) windowget(canvas, WIN_WIDTH)/6;
else if (strcmp(exptr->varname, "halfht") == 0)
return (int) windowget(canvas, WIN HEIGHT)/6;
else if (strcmp(exptr->vamane, "mouseX") = 0)

return mousex;
else if (strcmp(exptr->vamame, "mouseY") 0)

return mousey;
/* EVENTUALLY: search for varname in redisplay list & deal with
components*/
}
else return exptr->val;
I
lhs = 0;
rhs= 1;
if (exptr->left != NULL) lhs = doexpr(exptr->left);
if (exptr->right != NULL) rhs = do-expr(exptr->right);
switch (exptr->op)
case '': return lhs;
case '-': return lhs-rhs;
case '*': return lhs*rhs;
case '': return lhs/rhs;
case '+':
default : return lhs+rhs:

1

115

/* FUNCTION: do -location()o
1* PURPOSE: determine location for actions in list *

/* CALLED BY: do-action-ist()*
/* RETURNS: x,y *
/* CALLS: do-expr *
/* GLOBALS: <interp.h>*

void do_lIocation(Iocptr, x, y)
struct locnode *locptr;
int *,(, *y;
I(if (locptr == NULL) return;
else (

*x= dos-xpr(ocptr->x);
*y= do-expr(locptr->y);

116

/* FUNCTION: do -actionjlist()o
/* PURPOSE: execute actions in action list *
/* CALLED BY: start-selected() <interp.c> *
/* RETURNS: void */
/* CALLS: do -ocation()o
/* GLOBALS: Canvas canvas <interp.h> *

void do-actionjlist(actionnode)
struct actnode *action-node;
I
mnt dx, /* x coordinate of pixwin origin *
dy, /* y coordinate of pixwin origin *
dw, /* width of pixwin *
dh, 1* height of pixwin *
op; /* rasterop */
Pixwin *pw = canvas-pixwi n(canvas),
Pixrect *image;
char error msg[IL ERRORMSG SIZE]-,

for (inbuflen = 0; inbuflen <2048; inbuflen++)
inbufrinbufleni = AV';
inbuflen = 0;

#define REG_WIDTH (int) window-get(canvas, WIN&WIDTH)/3
#define REGHEIGHT (int) window~get(canvas, WINI-EIGHT)/3
while (action-node != NULL)
switch (action-node->actloc) I
case REG-ALL: (/* region 0 *
printf("Action in region ALL (code = d\"
action-node->actloc);
dx = 0;
dy = LINETQO.RASTER-Y(l);
dw =(int) window-get(canvas, WIN_WIDTH):
dh =(int) window..get(canvas, WIN_HEIGHT):,
break;

case REG_-ONE: (/* region I *
printfC'Action in region I (code = %d)\n", action-node->actloc):,
dx = 0;
dy = LINETORASTER-Y(1);
dw REG_ WIDTH;
dh =REGHEIGHT;

117

break;

case REG_-TWO:[{
printf("Action in region 2 (code =%d)\n", action-node->actloc);

dx = REG_WIDTH;
dy = LINETORASTER-Y(1);
dw =REGWIDTH;

dhA REG_ HEIGHT;
break;

case REG-THREE:
printf('tAction in region 3 (code =%d)\n", action-node->actloc);
dx =2 *REG-WIDTH;
dy = LINETORASTER-Y();
dw=REG_WIDTH;
dh =REGHEIGHT;

break;

case REG-FOUR:{
printfC'Action in region 4 (code = d)\n". action-node- >act loc).

dx = 0;
dy = REGHEIGHT + LINETORASTERY(1):
dw =REG_WIDTH;

dh =REGHEIGHT;

break;

case REG-FIVE:
printt("Action in region 5 (code = %d)\n'X action-node- >act]loc):

dx = REG_WIDTH;
dy =REG-HEIGHT +LINETORASTERY(1);,
dw=REG-WIDTH;
db REGHEIGHT;
break;

case REG-SIX:{
printf("Action in region 6 (code = %d)\n", action-node->actloc);
dx =2 *REG-WIDTH;
dy = REG-HEIGHT + LINETORASTER_Y(1):
dw=REG-WIDTH;
dli REG-HEIGHT;
break;

case REG-SEVEN:{

118

printf("Action in region 7 (code=%d)\n", action-node->actloc);
dx = 0;
dy = 2* REGHEIGHT + LINETORASTERY(1);
dw =REGWIDTH;

dh =REGHEIGHT;

break;

case REGE1GHT:fI
printf("Action in region 8 (code=%d)\n", action-node->actloc);
dx = REG_WIDTH;
dy = 2* REGHEIGHT + LINE_TO_RASTERY(1);
dw=REG-WIDTH;
dh =REGHEIGHT;

break;

case REG-NINE:f
printf("Action in region 9 (code="/(d)\n", action-node->actloc);.

dx = 2* REGWIDTH;
dy = 2* REG-HEIGHT + LINETORASTER_Y(1):
dw=REG-WIDTH;
dh=REG-HEIGHT;
break;

case REGOTHER:
default:(
printfC'U nrecogni zed region code '~-d\n",action-node->actloc);

1 * End switch *

switch (action_node->action)f
case ACTDRAW:t
printfC'Draw\n");
if (image = icon-load_ mpr(action node->info-str.
error-msg))
do -location(action-node->info_lou, &dx, &dy);
pw-write(pw, dx, dy, 64, 64, PIX-SRC, image, 0, 0);

else fprintf(stderr, "% s\n", error-msg):,
break;

case ACTCLEAR:f
printf("Clea~n");
if (action_node->info _str != NULL)

119

do -locazion(acion_node->info_loc, &dx, &dy);
pw...writebackground(pw, dx, dy, 64, 64, PIX-SRC);

else pw-writebackground(pw, dx - CHARTORASTERX(1),
dy - LINETORASTER-Y(1),
dw + CHARTORASTER-X(1), dh, PIXSRC);
break;

case ACTWRITE:
do -write(dx,dy,dw,dh,action node->info-srr);
break;

case ACTIN PUT:(
printf("lnput\n");
inx = dx;
iny = dy;
pw-writebackground(pw, dx - CHARTORASTERX(1).
dy - LINETORASTERY(1),
dw + CHARTORASTERX(1), dh, PIX-SRC).
break;

case ACTPAUSE:
printf("Pause\,n");
sleep(action-node->info-int);
/* while (is-pausing); set by pause, cleared by end-ofipause *
break;

case ACT-QUIT: I
printf("Quit\n");
break;

case ACT_-DRAG:(
printf("Drag\n");
break;

)/* End switch ~

action_node = action-node->next;
) /* End while */
/* test for only no-user-action responses & set up for seconds ~

12

/* FUNCTION: do -responsejlist()*
/* PURPOSE: execute actions in response list *
/* CALLED BY: input-events()*
P' RETURNS: int */
/* CALLS: create-assert-list <do_assertjlist.c> *
/* GLOBALS: current -state <interp.c>, inbuf, inbuflen *

int dojesponseiist(response node, resscode)
struct resnode *response-node;
int res,_code;
{ struct resnode *cur = response-node;
int retval = 0;
printf("testing %d\n",res-code);
while (cur != NULL)I
if (res_code == RES_-NULL)
/* evaluate expression ~

else if (ressCode == cur->expr->res act)
/* evaluate and test event ~

if (retval)
if (cur->label != NULL)
create-assert-list(current_stare->nodeid,
cur->label);
current-state = cur->node;
cur = NULL;

else cur = cur->next;
) /* End while *
return retval;

121

/* FUNCTION: input-eventsO *
/* PURPOSE: handle events and call for response evaluation *
1* CALLED BY: define-base-canvas() <interp.c> *
/* RETURNS: void */
/* CALLS: do~responsejist do-actionjlist *
/* GLOBALS: current -state <interp.c> ~

void inputsevents(window, event, arg)
Window window;
Event *event;
caddrj- arg;
lint id = event -id(event);
mnt rescode = RESNULL-,

#define TESTRES(Opcode)\
if (dojesponsejist(current-state->reslist, Opcode))\
do-actioniist(current-state->actlist)

if (current state == NULL) return;

if (id >= ASCIIFIRST && id <= ASCIILAST)
if ((char) id == '\r') {
TEST RES(RES-KEY);
for (inbuflen=O; inbuflen<2O48. inbuflen++)
inbuftinbuflen] = 'T';
inbuflen=-O;

else dowrite(inx, mny, REG-WIDTH, REG-HEIGHT, inbuf);

else if (id == MS-LEFT)
TEST-RES(RESCLICKLEFT);
else TESTRES(RES-CLICKANY);

else if (id == MSMIDDLE){
TEST-RES(RES_-CLICKMID);
else TESTRES(RES-CLICKANY);

else if (id == MS_RIGHT)
TESTLRES(RESCLICKRIGHT);
else TESTRES(RES-CLICKANY);

122

7A..

else if (id ==LOCMOVE 11 id ==LOCDRAG 11 id ==LOCJ'RAJECTORY)

TEST-RES(RESMOUSEMOVE);

123

/* FUNCTION: pauseo */
/* PURPOSE: start and monitor timer */
/* CALLED BY: doactionjist(*/
/* RETURNS: void */
/* CALLS: */
1* GLOBALS: */

Notify-yalue pause-time(client, which)
Notify_client client;
int which;
I
printf("Entered PAUSE TIMEn");
printf("%i seconds\n", which):
is-pausing = 0;
return (NOTIFY_DONE);
I

void pause(time)
int time;
(
struct itimerval runtimer;

printf("Entered PAUSE procedure\n");
printf("Length of timer is %i", time):
if (time <= 0) return; /* smart-alecs...
is-pausing = 1;
/* set up interval with which to RELOAD the timer */
runtimer.itinterval.tv_usec = 0;
run-timer.itinterval.tvsec = 0; /* timer interval */

/* set up INITIAL value with which to set the timer */
runtimer.itvalue.tv_usec = 0;
run_timer.it_value.tv_sec = time; /* current value */

printf("Calling set_itimerjfunc\n");
/* turn on interval timer for client */
(void)notify set itimer_func(canvas, pause-time, ITIMERREAL,
&run_timer, ITIMER_NULL);
I

124

#include "interp.h"

/* FUNCTION: createassertjlist(*/
/* PURPOSE: create linked list of assert states and identifier */
/* CALLED BY: doresponsejlistO */
/* RETURNS: void */
/* CALLS: find-assertlistO */
/* GLOBALS: struct assert *assert_list <interp.h> */

struct assert *createassert-list(node, identifier)
char *node, *identifier;

struct assert *tmp = assertlist.
char *temp-id;
int found = 1;

/* allocate space for temp-id */
temp-id = (char *)malloc(strlen (node) + strlen(identifier)
+ 1);

/* put asserted state in proper formiat for comparison with past */
/* identifier */
strcpy(temp-id, node):
strcat(temp-id, 'T);
strcat(tempid, identifier).

if (tmp == NULL){
/* empty list, create first link */
assertlist = (struct assert *)malloc(sizeof(struct assert)).
assertlist->id = temp-id;
assertlist->next = NULL;
)
else{
/* see if identifier already in assert list */
printf("Before call Find, found = %i\n", found);
found = findassert listid(assertjlist, temp-id);

printf("Just returned from FIND. FIND = 17ci\n", find assertlist_id(assertlist,
temp id));

printf("Just returned from FIND. FOUND = %in", found):

125

if (found == 0)1
/* identifier not in assert list ~
/* find end of list and add new link *
while (tmp->next != NULL)(
tmp = tmp->next;
) /* End while, end of assert list found ~
1* create space in memory for new link *

tmp->next = (struct assert*)malloc(sizeof(struct assert));
tmp = tmp->next;
tmp->id = temp-id;
tmp->next = NULL;

1/* End if */
)/* End else *

printf("ASSERT LIST FOLLOWS\n")-:
tmp = assert-list;
while (tmp != NULL)(
printf("%s\n", tmp->id);
tmp = tmp->next;

return (as se rtl lst);

126

/* FUNCTION: findassertlistid0 */
/* PURPOSE: find given identifier in assert list */
/* CALLED BY: createassertlist0 */
/* RETURNS: int *
/* CALLS: */
/* GLOBALS: */

int findassertlistjid(list, target)
struct assert *list;
char *target;
{

int status;
printf("Begin FIND\n");
printf("TARGET is: %s and ASSERT ID is: %s\n", target, list->id);
if (strcmp(list->id, target) == 0)1 /* found match */

printf("Assert ID FOUND. Return 1 .\n");
status = 1;
printf("Returning %i\n", status):
return (status);
)
else{
if (list->next == NULL){ /* end of assert list */
I* target not found */
printf("Assert ID NOT FOUND and END OF LIST. Return 0.,n");
status = 0;
printf("Returning %i\n", status);
return (status);
}
else{ 1* target nof found, move to next in assert list */
printf("Assert ID NOT FOUND. Recursing... ")n
return findassertlistid(list->next, target);

1I
}

127

APPENDIX F

DATA STRUCTURE EXPLANATION

Illustrations of the menu and cfdgraph data structures appear in Figures 1 and 2, respectively, as visual

menu menunode cfdnode

cies . choice See Figure 2/state-o
n1ext

FIGURE 1: menu Data Structure

aids.

1. menu

a. title

A character string of the title of the tutorial.

b. choices

A pointer to a linked list of the titles of the start states to appear in the main menu. The

choices pointer points to menunode.

2. menunode

a. choice

A character string of the title of the main menu item.

128

*g §
> >

* <10

* S S I

* P

* I Iel

..

a go

* r

*e L' *r Lei__ _ _ _ _ _

40--

129

b. state

A pointer to the state (cfdnode) of that main menu item in the cfdgraph. The state pointer

points to cfdnode. This allows the tutorial to go directly to that state within the cfdgraph.

c. next

A pointer to the next menunode in the choices linked list.

3. cfdnode

a. nodeid

A character string identifying the state.

b. actlist

A pointer to a linked list of the action list. The actlist pointer points to an actnode linked list

data structure.

c. reslist

A pointer to a linked list of the response list. The reslist pointer points to a resnode linked

list data structure.

d. next

A pointer to a linked list of nodes in the cfdgraph. The next pointer points to the next

cfdnode created, not necessarily the next state.

4. actnode

a. actloc

An integer representing the regionid. The region-id and their corresponding region codes

are listed in the file parser.h found in Appendix D.

b. action

An integer representing the action in the actionnode. The action codes are found in the file

parscr.h in Appendix D.

130

c. infostr

A character string argument for the text to be displayed in the window or the file name of an

icon.

d. infoint

An integer representing the different input modes, such as mouse. The input modes and the

corresponding codes are found in the file parser.h in Appendix D.

e. infooc

A pointer to a linked list of the location arguments in the action list. The info loc pointer

points to a locnode linked list data structure.

f. next

A pointer to a linked list of each action in the action list. The next pointer points to actnode.

5. locnode

a. X

A pointer to a linked list data structure of the x coordinate of a location in the window. The

x pointer points to an expnode.

b. y

A pointer to a linked list data structure of the y coordinate of a location in the window. The

y pointer points to an expnode.

6. expnode

a. left

A pointer to a linked list of the operands of an arithmetic expression. The left pointer points

to expnode.

b. right

A pointer to a linked list of the operands of an arithmetic expression. The right pointer points

to expnode.

131

C. Op

A character representing the four arithmetic operators: +, -, * and/.

d. varname

A character string of the argument mouseX, mouseY, the identifier for the icon file name or

the variable name used in the arithmetic expression. Refer to Figures 4 and 5 for an example.

(1, draw, mouse.sym@(mouseX, mouseY))

expnode

left = NULL
right = NULL
op =
varname = mouseX

actnode Iocnode COMP = '

actloc = I al
action = ACTDRAW
info_str = mouse sym.icon expnode
info int = 0
info-loc= left = NULL

right =NULL
op =

varname = mouseY
comp = ''

val = 0

FIGURE 4: Example of varname

e. Comp

A char specifying x, y, or blank. The x and y refer to identifier.x and identifier.y,

respectively. Refer to Figures 4 and 5 for an example.

f. Val

An integer representing the operand value in the expression.

132

(1, clear, mouc.wsym@(detector.x, detector.y))

expnode
h

left = NULL
right = NULL
op =
vaname = detector

actnode Iocnode comp = x
val = 0

actloc = I
action = ACT.CLEAR
infostr = detectorsym.icon expnode
info_int =0
infoloc= left = NULL

right = NULL
op=
varnamc = detector
comp = y
val = 0

FIGURE 5: Another Example of varname

7. resnode

a. expr

A pointer to a tree representation of each response in the response list. The expr pointer

points to an opnode linked list data structure.

b. label

A character string for the identifier associated with assert. When the actual assert list is

created, the character '/' separates the state and the label. For example, if the state = st I and the label = "left,"

then the assert list identifier would be "st-I/left."

c. node

A pointer to the state or node in the cfdgraph to go to if the given response is received. The

node pointer points to a cfdnode linked list data structure.

133

d. next

A pointer to the next response in the response list. The next pointer points to a resnode linked list

data structure.

8. opnode

a. left

A pointer to the left node in a tree structure of a response that includes logical operators. The

left pointer points to another opnode. Figure 20 illustrates one of the response events of state st_1_1_25 of

the POST script (Appendix B).

b. right

A pointer the right node in a tree structure of a response that includes logical operators. The

right pointer points to another opnode. Figure 6 illustrates one of the response events of state st_1_1_25 of

the POST script (Appendix B).

c. operator

An integer representing the logical operators. The logical operators and their corresponding

codes are listed in the file parser.h in Appendix D.

d. resact

An integer representing the response event. The response codes are listed in the file parser.h

found in Appendix C.

e. res left

A pointer to an arithmetic operation used in the relop or loc_.part of he grammar. The

res-left pointer points to an expnode.

f. res~jight

A pointer to an arithmetic operation used in the relop or locpart of the grammar. The

resright pointer points to an expnode.

g. resnt

An integer for the integer argument in the responsenode "seconds."

134

(click-continue & ((past sLL16.25 help I past stI_6.25 wrong-.ans))

AA

click-continue

stj ..62 5/hlp st..L&-25/%%rong..ans

opnode opnode

left = NULL left = NULL
operator = OPNULL operator = OP_NULL
right = NULL right = NULL
rcsact = RESCLICKCONT res-act = RES-PAST
resileft resjleft

opflode res-ight res-ight

letrcs-int res ant
leato = rcs-su' res-str = St_6_25/help

right
res -act = RES-NULL
rcs_left opnocle opflode
res -right
res-int lef___________ left = NULL
res-sir operator = OP-)R operator = OP -NULL

right ... right = NULL
res _act = RES-NULL res act = RES-PAST
res_left res-left
rcs-right rcsjight
res-int res-imt
rcs _sir rcs -str = st..6.25/wrong.ans

FIGURE 6: Response Event Data Structure

135

h. iv, ~sb

A chwwter siring reprcsenling ilic idenlifier for pest.

I

0

£

q

13

LIST OF REFERENCES

Bork, Alfred, International Development of Technology-Based Learning Courses, Educational Technology
Center, Information and Computer Science, University of California, Irvine, August 31, 1990.

Bork, Alfred, Pedagogical Development of Computer-Based Learning Material, Educational Technology

Center, Information and Computer Science, University of California, Irvine.

Bork, Alfred, Production Systems for Computer-Based Learning, University of California, Irvine.

Burke, Robert L., CAI Sourcebook, Prentice-Hall, Inc., 1982.

Cleveland, Bernard F., Mastering Teaching Techniques, The Connecting Link Press, 1986.

Electronic mail from Alfred Bork, bork@idyllwild.ics.usi.edu, 08 February 1991.

Krcndl, Kathy A. and Lieberman, Debra A., "Computers and Learning: A Review of Recent Research,"
Journal of Educational Computing Research, v. 4, n. 4, Baywood Publishing Co., Inc., 1988.

Levin, Tamar and Long, Ruth, Effective Instruction, The Association for Supervision and Curriculum
Development, 1981.

Marks, Gary H. and Bartholomew, Rolland, "Computer-Assisted Instruction in Secondary Physical Science:
An Evaluation of Student Achievement and Attitudes," Proceedings of National Educational Computing
Conference (NECC), 17-19 June 1981. North Texas State University, University of Iowa, 1981.

Walker, Decker F. and Hess, Robert D., ed., Instructional Software Principles and Perspectives for Design
and Use, Wadsworth Publishing Company. 1984.

Yourdon, E., Modern Structured Analysis. Prentice-Hall, Inc., 1989.

137

BIBLIOGRAPHY

Bork, Alfred, International Development of Technology-Based Learning Courses, Educational Technology
Center, Information and Computer Science, University of California, Irvine, August 31, 1990.

Bork, Alfred, Pedagogical Development of Computer-Based Learning Material, Educational Technology
Center, Information and Computer Science, University of California, Irvine.

Bork, Alfred and Pomicter, Nancy, "Practical Techniques Useful in Authoring Technology-Based Learning
Material", Journal of Computer-Based Instruction, Spring 1990, v. 17, n. 2, 53-60, 1990.

Bork, Alfred, Production Systems For Computer-Based Learning, University of California, Irvine.

Bork, Alfred, Tools For Developing Technology-Based Learning Units, Educational Technology Center,
Information and Computer Science, University of California, Irvine, May 30, 1990.

Burke, Robert L., CAI Sourcebook, Prentice-Hall, Inc., 1982.

Cleveland, Bernard F., Mastering Teaching Techniques, The Connecting Link Press, 1986.

Electronic mail from Alfred Bork, bork@idyllwild.ics.usi.edu. 08 February 1991.

Gray, Susan H., "The Effect of Locus of Control and Sequence Control on Computerized Information
REtrieval and Retention," Journal of Educational Computing Research. v. 5, n. 4, Baywood Publishing Co.,
Inc., 1989.

Hativa, Nira, "Differential Characteristics and Methods Underlying CAI/CMI Drill and Practice Systems,"
Journal of Research on Computing in Edui ation, v. 20. n. 3, Spring 1998.

Krendl, Kathy A. and Lieberman, Debra A., "Computers and Learning: A Review of Recent Research,"
Journal of Educational Computing Research. v. 4, n. 4. Baywood Publishing Co., Inc., 1988.

Levin, Tamar and Long, Ruth, Effective Instruction. The Association for Supervision and Curriculum
Development, 1981.

Marks, Gary H. and Bartholomew, Rolland, "Computer-Assisted Instruction in Secondary Physical Science:
An Evaluation of Student Achievement and Attitudes," Proceedings of National Educational Computing
Conference (NECC), 17-19 June 1981. North Texas State University, University of Iowa, 1981.

Mason, Tony and Brown, Doug, lex & yacc, O'Reilly and Associates, Inc., 1990.

Sleeman, D. and Brown, J. S., ed, Intelligent Tutoring Systems, Academic Press, Inc., 1982.

Urick, Robert J., Principles of Underwater Sound, 3d ed., McGraw-Hill Book Company, 1983.

138

Walker, Decker F. and Hess, Robert D., ad., Insructional Software Principles and Perspectives For Design
and Use, Wadsworth Publishing Company, 1984.

Yourdon, E., Modern Structured Analysis. Prentice-Hall, Inc., 1989.

139

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5002

3. LT Dawn M. Maskell
c/o 2 Lenox Court
Longview
Montville, NJ 07045-9001

4. Timothy J. Shimeall 3
Code CS/Sm
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

5. Robert B. McGhee
Chairman, Code CS
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

6. CDR Thomas J. Hoskins
Curricular Officer, Code 37
Naval Postgraduate School
Monterey, CA 93943-5100

7. Space and Naval Warfare Systems Command
ATTN: CAPT Kirk E. Evans, USN (PD-80)
Washington, D. C. 90363-5100

140

8. Space and Naval Warfare Systems Command
LCDR J. L. Knecht, USN (PMW 183-11)
Washington, D. C. 90363-5100

9. Space and Naval Warfare Systems Command
ATTN: LCDR P. A. Feldmann, USN (PMW 183-113)
Washington, D. C. 90363-5100

10. Space and Naval Warfare Systems Command
ATTN: OTAC R. Bryan (PMW 181)
Washington, D. C. 90363-5100

11. Applied Research Laboratories
The University of Texas at Austin
ATTN: Steve Houser
P. 0. Box 8029
Austin, TX 78713-8029

12. Applied Research Laboratories
The University of Texas at Austin
ATTN: Carol Sheppard
P. O. Box 8029
Austin, TX 78713-8029

13. Alfred Bork
Educational Technology Center
Information and Computer Science
University of California
Irvine, CA 92717

141

